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I Deep Neural Network-based Network Traffic Classifier

® \Norkflow of the DNN-based Network Intrusion Detector (NID)
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» Traffic Data includes both Numeric and Non-numeric Values (e.g. protocol, network service,
timestamp, etc.)

« First, transform the raw network traffic vector x,.,,, into a numerical feature vector x,,,,,,.

« Then, normalize it into a feature vector x in a continuous real number range.
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I Threats to Deep Neural Networks (DNNs)

® Standard Train a Base Classifier F ® Evasion Attack with Adversarial Example (x + 6)
» Optimization objective of standard training » Optimization objective of untargeted attack
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I Empirical Defense vs. Certified Defense

® Perspective of Robust Defense for Deep Neural Networks (DNNSs)

» Empirical Defense
* Improve the model's prediction accuracy in adversarial attacks through robust training.

» Certified Defense
« Provide the certified robust radius as the robustness certification of the predicted output.
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I Empirical Defense vs. Certified Defense

® Perspective of Robust Defense for Deep Neural Networks (DNNSs)

» Empirical Defense
* Improve the model's prediction accuracy in adversarial attacks through robust training.

» Certified Defense
* Provide the certified robust radius R as the robustness certification of the predicted output.
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I Empirical Defense vs. Certified Defense

® Perspective of Robust Defense for Deep Neural Networks (DNNSs)

» Empirical Defense
* Improve the model's prediction accuracy in adversarial attacks through robust training.

» Certified Defense
* Provide the certified robust radius R as the robustness certification of the predicted output.
* Robustness Guarantee

v" For input x, predictions of classifier F
on perturbed data within an [, norm-
measured radius R around x, are
guaranteed to remain consistent.

v That is, any small perturbation § to x
within this region, including
adversarial attacks, will not change
the prediction results.
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I Certified Defense

® [, Norm-bounded Certified Radius of DNN-based Multi-class Classifier on the Input x
» Multiple Norm Types: [, norm, [, norm, [, norm,
» Exact Robust Radius: R,
» Upper/ Lower Bound of Exact Robust Radius: R,, R,

(a) |161], <R (b) [181] _ <R () |Isl], <R
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I Certify Robustness of DNN-based Network Traffic Classifiers

® Motivation
» Certified defense efforts for network intrusion detection have been minimal, only BARS (NDSS’23).

» The [, robustness guarantee is relatively loose and lacks certification for other [, certified radii.

® Problems to be solved:
» Pro1: Define a certified radius that can bound heterogeneous network traffic features.
» Pro2: Expend the certified robust region to tighten the robustness guarantee.
> Pro3: Provide the multiple [, norms-bounded robustness guarantees of the model.

® Core ldea:

> Extend the real-value certified radius R to a vector (R, ...,R;) € R%, where R; denotes the
dimensional certified radius for the i-th feature x; of the heterogeneous input x.

» Introduce the multiple order information of the smoothed classifier to expand the certified region.

> Align the sampling area of smoothing distribution with the [,,-measured surroundings of the input.
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I Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

® Framework of Proposed Multi-Order Adaptive Randomized Smoothing (MARS)

» Prediction Procedure
« Sampling n;, = ng,,,;; NOise data = Predict the category of the input x.

» Certification Procedure
« Sampling n, = n,4,4. Noise data - Calculate the robust radius R of the model on the input x.
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I Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

® Phase 1: Smoothing Distribution Parameters Optimization

» Distribution Shape Optimization.
« Encourage noised samples to be near the decision boundary of the classifier for x.

» Distribution Scale Optimization.
« Expand the noise sampling area by adjusting the smoothing distribution's scalar parameter.
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I Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

® Phase 2: Multi-order Information-based Certified Robust Radius Calculation
» Zero-order Output Probability Information-based Certified Radius Calculation
» First-order Gradient Information-based Certified Radius Extension
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I Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

® Phase 3: Dimensional Robust Radius Weight Calculation Calculation

(81, ..., 54)
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» Dimensional Feature Sensitivity Analysis
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» Dimensional Radius Contribution Quantification

ACID (DoS-GoldenEye)
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I Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

® Smoothing Distribution Diversity
» Gaussian Distribution aligns with [, norm-bounded certified region
» Laplacian Distribution aligns with [; norm-bounded certified region

» Uniform Distribution aligns with [, norm-bounded certified region
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I Experimental Setup

® Dataset

» Three datasets created from CIC-IDS-2018

® Model
> CADE

Contrastive Autoencoder
for Drifting detection and

Dataset | DoS-Hulk-Drift Dataset | Infiltration-Drift Dataset | Diverse-Intrusions Dataset Exol i
Class Number Class Number Class Number Xplanation
(USENIX 2021)
Benign 52996 Benign 52996 Benign 52996
SSH-Bruteforce 9385 |[SSH-Bruteforce 9385 |FTP-Bruteforce 12590
Training )
Infiltration 7390 DoS-Hulk 34789 | DDoS-HOIC 53476 > ACID
. : . : Bot 22584 Adaptive Clustering-
Benign 13249 Benign 13249 Benign 13249 based Intrusion Detection
SSH-Bruteforce 2346 |SSH-Bruteforce 2346 |FTP-Bruteforce 3148
Test ' (INFOCOM 2021)
Infiltration 1894 DoS-Hulk 8697 DDoS-HOIC 13369
DoS-Hulk 43486 Infiltration 9327 Bot 5646
Background Problem Solution Evaluation Conclusion



I Experimental Setup

® Attack Configuration

Features Perturbed under Different Natural Corruptions

» Evasion Attack

Projected
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I Experimental Setup

® Attack Configuration
» Evasion Attack
« PGD: Projected

Gradient Descent
e EAD: Elastic-Net

Attack to DNN

» Natural Corruption
« Latency

« Packet Loss

Background

Perturbed Featured under Latency

No Feature Name No Feature Name
8 Flow_Duration 34 Bwd_TAT Mean
23 Flow_IAT_Mean 35 Bwd_IAT_Std
24 Flow_IAT_Std 36 Bwd_IAT_Total
25 Flow TAT Max 50 Packet_Length_V ariance
26 Flow TAT Min 76 Active_Min
27 Fwd TAT Min 77 Active_Mean
28 Fwd TAT Max 78 Active_ M ax
29 Fwd TAT Mean 79 Active_Std
30 Fwd ITAT Std 80 Idle Min
31 Fwd TAT Total 81 Idle Mean
32 Bwd_IAT Min 82 Idle_ Max
33 Bwd AT Max 83 Idle_Std
Evaluation




I Experimental Setup

® Attack Configuration
» Evasion Attack

Perturbed Featured under Packet Loss

 PGD: Projected No Feature Name No Feature Name
Gradient Descent 9 Total Fwd_Packet 33 PSH_Flag_Count
e EAD: Elastic-Net 10 Total_Bwd_packets 54 ACK_Flag_Count
Attack to DNN 11 Total_Length_of_Fwd_Packet 53 URG_Flag_Count
12 Total_Length_of_Bwd_Packet 56 CWR_Flag_Count
21 Flow_Buyte/s 57 ECFE_Flag _Count
» Natural Corruption 22 Flow_Packets/s 63 Fwd_AV G_Packet/Bulk
« Latency 43 FW D_Packets/s 66 Bwd_AV G_Packet/Bulk
44 Bwd_Packets/s 68 Subflow_Fwd_Packets
* Packet Loss 50 FIN_Flag_Count 70 Subflow_Bwd_Packets
51 SYN_Flag_Count 74 Act_data_pkt_ forward
52 RST_Flag_Count £ -

Background Evaluation




I Experimental Setup

® Comparison of Certified Defense Methods

» VRS: Vanilla Randomized Smoothing (ICML 2019) —> designed for Image
» FRS: First Order-based Randomized Smoothing (NeurlPS 2020) —> designed for Image
» BARS: Boundary-Adaptive Randomized Smoothing (NDSS 2023) —> designed for Traffic
Robustness Guarantee Diversity Adversarial Attacks Natural Corruptions
Method |Heterogeneity |Universality
[> Radius [; Radius [ Radius |lo Attack [; Attack [, Attack |Latency Loss
VRS 017 O o o O O O O O O O
FRS 135] O o ® ® [ ] O O O O O
BARS 18] ® ® o O O O O & O O
MARS o ® @ 8 [ ® L ® o ®

[17] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning (ICML). 1310-1320.

[35] Jeet Mohapatra, Ching-Yun Ko, Tsui-WeiWeng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2020. Higher-order certification for randomized smoothing. In Advances in Neural Information Processing
Systems (NeurlPS). 4501-4511.

[18] Kai Wang, Zhiliang Wang, Dongqi Han, Wengi Chen, Jiahai Yang, Xingang Shi, and Xia Yin. 2023. BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems. In

Network and Distributed Systems Security (NDSS) Symposium.
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I Experimental Setup

® Evaluation Metrics
» Certified Robustness

N
. . . — 1
. Mean Certified Radius Mean Certified Radius (MCR) = ﬁ; R;

N(Fsmooth (x) o ytrue)&(RZRgiven)
N

* Certified Accuracy Certified Accuracy (CerAcc) =

» Empirical Robustness

TP
» Robust Accuracy on Adversarial (Malicious) Examples ~ Recall = ———

* Robust Accuracy on Corrupted (Malicious & Benign) Examples
N(Fsmooth(X*):ytrue) . TP+TN

Robust A RobAcc) = -
obust Accuracy (RobAcc) N TP+ TN + FP + FN

» Regular Predictive Performance

N(Fsmooth (x):ytrue)

N

Evaluation

e (Clean Accuracy Clean Accuracy (CleAcc) =
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I Evaluation Results and Analysis

® Exp 1: Comparison of [,-bounded Certified Robustness with SOTA Method

> Exp Setup: ngpq; =100, ny4rg. =10,000. Compare the [, overall MCR R of the model by category.

» Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.
* For CADE trained on DoSHulk-Drift dataset, MARS shows a 0.23% and 0.03% higher MCR
in Benign and Infiltration classes, respectively, than SOTA BARS.
 For CADE trained on Infiltration-Drift dataset, MARS exhibits a 0.22%, 93.66%, and 0.2%
MCR increase in Benign, SSH-Bruteforce, and DoS-HULK categories compared to BARS.

250 CADE-DoS-Hulk-Drift (Benign) 0 CADE-DoS-Hulk-Drift (Infiltration) > 060 CADE-Infiltration-Drift (Benign) 050 CADE-Infiltration-Drift (SSH-Bruteforce)
2.40 2.058
0.40
230 2.055
2.20
o @ 2.053 x 0.30
O 2.10 O o
= S 2.050 =
2.00 ~
o l ok = 020
1.90 . VRS mm VRS = VRS
1.80 EEE FRS 2.045 Em FRS i EEE FRS
BN BARS B BARS ’ BN BARS
1.70 2.042
mm MARS e MARS s MARS
1.60 — 2.040 — 0.00 ————
42 43 42 43 44 42 43 44 42 43 44
Random Seed Random Seed Random Seed Random Seed
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I Evaluation Results and Analysis

® Exp 1. Comparison of [,-bounded Certified Robustness with SOTA Method

> Exp Setup: ngpq; =100, ny4rg. =10,000. Compare the [, overall MCR R of the model by category.

» Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.
 For ACID trained on Diverse Intrusion dataset, MARS exhibits a 1.75%, 6.44%, 0.04%, and
7.49% MCR increase in Benign, FTP-Bruteforce, DDoS-HOIC, and Bot categories compared
to SOTA Certified Defense BARS.

ACID (Benign) ACID (FTP-Bruteforce) ACID (DD0S-HOIC) ACID (Bot)
1.90 1.70 2.490 2.70
. VRS
70 1.65 2.485 — m‘;sé
3 2.60
5 . VRS - 1.62 - 2.482 -
g 10 B = 1.60 = 2.480 = 2.55
Z Lo = BARS = = =
it MARS ~ eg ~ 2478 -
T e VRS - VRS 2.50
' 1.55 . FRS 2475 . FRS
2.45
- MA — MA 1 5 B
1.20 1.50 2.470 2.40
42 43 44 42 43 44
Random Seed Random Seed Random Seed Random Seed
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I Evaluation Results and Analysis

® Exp 1. Comparison of [,-bounded Certified Robustness with SOTA Method
» Exp Setup: Compare the Certified Accuracy of the model w.r.t the [,-bounded certified radius.

» Observation: MARS demonstrated the certified robustness of the model in a larger region.
 For CADE, MARS maintains 100% accuracy until the MCR threshold reaches 0.4, while the
that of the SOTA methods begins to drop sharply when the threshold just exceeds 0.15.
« For ACID, MARS shows significant advantages over SOTA until the MCR reaches 1.5.

CADE SSH-Bruteforce ACID FTP-Bruteforce
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I Evaluation Results and Analysis

® Exp 2: Comparison of Various [,,-bounded Certified Robustness with SOTA Method

2.50

2.00

1.50

MCR

1.00

0.50

0.00

Background Problem Solutlon Evaluation

> Exp Setup: ngpq, =100, 1,444, =10,000. Compare the [, I, MCR of the model by category with
FRS, since neither VRS nor BARS supports [,-bounded and [.,-bounded robustness certification.

» Observation: MARS consistently provides larger l,,-bounded radius compared to FRS.
« FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network
traffic features, MARS produces non-trivial l,, I,, and [, radii.
« For CADE trained on DoSHulk-Drift dataset, MARS outperforms FRS by 29.25%, 28.95%,
and 28.72% in [,, [, and [, radii on Benign, respectively.

CADE-DoS-Hulk-Drift (Benign) CADE-DoS-Hulk-Drift (Infiltration) 555 CADE-Infiltration-Drift (Benign) Gib CADE-Infiltration-Drift (SSH-Bruteforce)

N FRS N FRS N FRS N FRS

N MARS s MARS B MARS s MARS
0.40
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2
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0.00 - 0.00
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I Evaluation Results and Analysis

® Exp 2: Comparison of Various [,,-bounded Certified Robustness with SOTA Method

> Exp Setup: ngpq, =100, 1,444, =10,000. Compare the [, I, MCR of the model by category with
FRS, since neither VRS nor BARS supports [,-bounded and [.,-bounded robustness certification.

> Observation: MARS consistently provides larger L,,-bounded radius compared to FRS.
« FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network
traffic features, MARS produces non-trivial l,, I,, and [, radii.
* For ACID trained on Diverse Intrusion dataset, MARS outperforms FRS by 50.78% and
951.32% in [, and [, radii on Benign, respectively.

ACID (Benign) ACID (FTP-Bruteforce) ACID (DD0S-HOIC) ACID (Bot)

2.00 1.80 2.50
= FRS e . FRS . FRS 2.50 B FRS
175 m MARS m MARS E MARS BN MARS
1.50 2.00
1.20
1.25
1 00 o 150
1.00 3]
o 80 =
0.75 1.00
0.60
0.50
0.40 0.50
0.00 0.00 0.00

Norm Norm Norm Norm

MCR
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I Evaluation Results and Analysis

® Exp 2: Comparison of Various [,,-bounded Certified Robustness with SOTA Method
» Exp Setup: Compare the Certified Accuracy of the model w.r.t the [,,-bounded certified radius.

» Qbservation: l, radius is usually smaller than the l, radius and larger than the |, radius.
* At the same radius, the area bounded by [; norm should be the smallest, and the area

defined by [, should be the largest.
« Different norm-bounded radii calculated experimentally are consistent with theoretical results.

CADE SSH-Bruteforce ACID FTP-Bruteforce
1.0 L1 1.0
—_— |2
> >
§ 0.8 Linf § 0.8
= s )
© 0.6 © 0.6
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@ 0.4 @ 0.4
= =
; "
Y 0.2 8 o.2
0.0 l 0.0
0.0 0.5 1.0 0.0 05 10 15 2.0 25 3.0
Robustness Radius Robustness Radius
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I Evaluation Results and Analysis

® Exp 3: Comparison of Empirical Robustness against Evasion Attacks with SOTA Method

» Exp Setup: Attack ACID with PGD and EAD adversarial Bot. Iteration is 20. For [,-PGD and [; -
EAD, perturbation limit € is 1.0, with per-step budget €, of 0.75. For [,-PGD, € is 0.2 and €, is 0.1.

» Observation: MARS surpasses SOTA defense in robustness against evasion attacks.
 MARS improves robust accuracy over the Vanilla detector (base model without defense) by
13.79% for 1,-PGD, 33.94% for [,-PGD, and 10.01% for [,-EAD.
 MARS also outperforms SOTA BARS, boosting robust accuracy by 1.7% for [,-PGD, 7.17%

for [,-PGD, and 10.11% for [,-EAD.

 MARS well retain the clean accuracy of the ACID on clean Bot samples, reaching 100%.

Method CleanAcc/Recall | RobustAcc/Recall on Adversarial Bot (%)
on Clean Bot (%) [2-PGD loo-PGD  [1-EAD
Vanilla 100.00+£00.00 | 83.95+00.00 55.02+00.01 00.27+00.00
BARS [18] 100.00+£00.00 | 96.04+00.05 81.78+00.20 00.16+00.01
MARS 100.00+00.00 | 97.74+00.13 88.95+00.31 10.28+00.06

Background

Evaluation




I Evaluation Results and Analysis

® Exp 4. Comparison of Empirical Robustness against Natural Corruptions with SOTA Method

» Exp Setup: Generate natural corrupted samples from clean benign/malicious samples using
Latency and PacketLoss. Use random noise following a Gaussian distribution with mean 0.

Adjust the standard deviation ¢ in {0.5, 1.0, 1.5} to mimic the different corruption strengths.

» Observation: MARS surpasses SOTA in robustness against various corruption intensities.
 MARS outperforms SOTA BARS in robust accuracy, exceeding it by 8.53% on corrupted
Benign and 7.5% on corrupted Bot.

Latency (Benign) Latency (Bot) Lo PacketLoss (Benign) PacketLoss (Bot)
0.9 1.0 . 1.0
| |
[ ] =8— Vanilla u =8= Vanilla 4 == Vanilla -, == Vanilla
0g @ —A=— BARS 09 —i= BARS 09 g —i=— BARS 0.9 —a— BARS
—ml- MARS —m- MARS —H— MARS —m— MARS
o 2 z 3 -
g8 07 g o8 g 0.8 g 08
3 n 3 3 2
< 06 \ < 07 L < 07 I < o7 o
@ 2 @ @ @
> > > '®. 3
3 05 = Sos * S 06 ‘ 3 06 "
x - 14 x @
® ] u
0.4 A 0.5 0.5 0.5 ®
(]
A A
0.3 0.4 0.4 0.4
0.5 1 15 0.5 1 15 0.5 1 15 0.5 1 15
Natural Corruption Strength Natural Corruption Strength Natural Corruption Strength Natural Corruption Strength
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I Evaluation Results and Analysis

® Exp 5: [, Certified Robustness with Different Smoothing Distributions

> Exp Setup: CADE-DoS-Hulk-Drift-Benign
» All baselines use Gaussian as
the smoothing distribution.
 MARS considers distribution CADE-Infiltration-Drift-Benign
diversity and sequentially uses
Gaussian, Laplacian, and
Uniform distributions.

CADE-DoS-Hulk-Drift-Infiltration

CADE-Infiltration-Drift-SSH-Bruteforce

CADE-Infiltration-Drift-DoS-Hulk

Class

ACID-Benign

» Observation:
« Different distributions each excel
in different classes.
. . . . . [ Gaussian
* Using a single distribution may ACID-Bot mem Laplace
miss a tighter certified radius. 00 05 10 15 20 25 30

MCR
Background Evaluation
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I Evaluation Results and Analysis

® Exp 6: Dimension-Wise Certified Robustness ™, gadius

FeatureName Description
> Exp Setu p: MARS’s To p-5 and bottom-5 24 0.0426 Flow_IAT_Std Standard deviation time two flows.
i ) : : o
dimension-wise radius of the ACID. 20 00433 Bwd PackelLengh S o ondard deviationsize of packet
in backward direction.
> Obse rvatiOn . 79 0.0488 Active_Std Standard deviation time a flow was
active before becoming idle.
 The model demonstrates greater - 00569 Init_ Win,_bytes forward Number of bytes sent in initial

window in the forward direction.

sensitivity to inter arrival time (IAT)- ) oo N Mt time a flow was active
related features while showing ' - before becoming idle.
greater rObUStneSS tO forwal’d paCket 8 10.0741 Flow_Duration Flow duration.
Number of times URG flag was
length-related features. 39 10.9644 Fwd_URG._Flag set in packets travelling in the
. . . . . . forward direction (0 for UDP).
* ThlS flndlng IS ConSIStent Wlth the 52 11.2367 RST_Flag_Count Number of packets with RST.
previous observation that the vanilla Number of times PSH flag was
A CI D d | h . b‘t d ) f tl 38 11.3300 Bwd_PSH_Flag set in packets travelling in the
modadel exnibitea s Ig nitican y backward direction (0 for UDP).
reduced robust accuracy on 13 114358 Fwd_Packet_Length Min Mifmmu”;s;_ze Oj packet
. in forward direction.
corru pted Samples US|ng Latency' All 2.2305 MCR Mean certified radius per class.

Background Evaluation




I Summary

® Contribution
» Robustness Certification Framework

« Proposed MARS, a novel certification framework to calculate the robust radius of DNN-based
network intrusion detectors that requires no modification to model structure.

> Multi-Order Information Utilization

« Introduced a method to expand certified regions by leveraging multi-order information of the
classifier beyond zero-order techniques.

» Dimensional-Wise Robust Radius

« Designed a dimensional robust radius calculation approach for inputs with heterogeneous
features, like network traffic.

> New Threat Model

« Extended empirical robustness evaluation of traffic classifier to account for natural corruption
(e.g., Latency and Packet Loss) in addition to evasion attacks using adversarial examples.

Background Conclusion




I Future Work

® Targetissues
» Non-l,, Robustness Certification against Structural Perturbations

- Different from the [,-norm bounded changes of input features, for structural perturbations that
change the overall structure or composition of the input (such as adding, deleting, or
reordering nodes/edges in a graph), special non-1,, robustness certification is needed to
evaluate and guide the model’s robustness improvement.

» Robustness Certification for Multi-modal Models

« Current certified defense techniques often face challenges in evaluating robustness across
multiple data modalities. Designing a framework that can certify robustness by considering
the interactions between heterogeneous and homogeneous data inputs simultaneously will
be interesting.

Background Conclusion
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