

MARS: Robustness Certification for Deep Network Intrusion Detectors via Multi-Order Adaptive Randomized Smoothing

Mengdie Huang^{1,2}, Yingjun Lin², Xiaofeng Chen^{1✉}, Elisa Bertino²

¹ Xidian University

² Purdue University

西安电子科技大学
XIDIAN UNIVERSITY

Contents

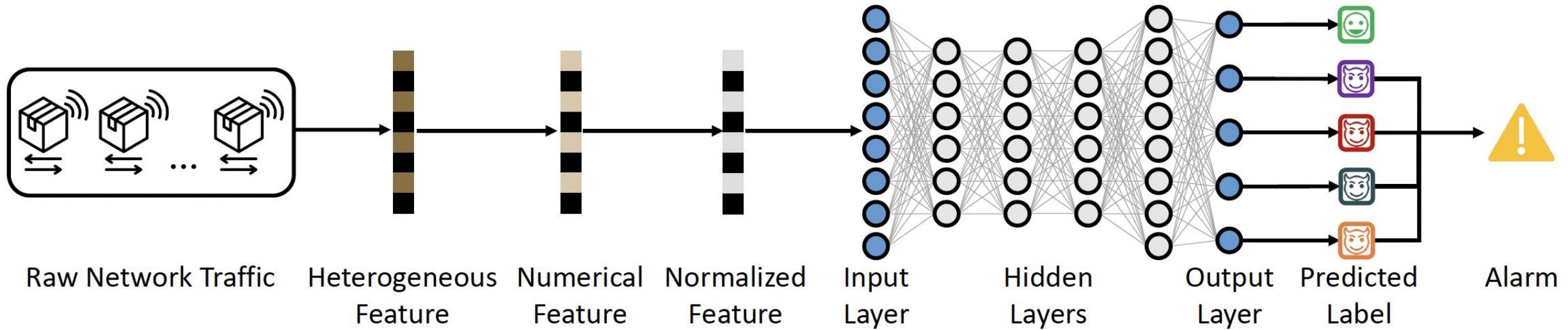
- Background
- Problem
- Solution
- Evaluation
- Conclusion

Keywords

- Deep Neural Network
- Network Intrusion Detection
- Natural Corruption
- Evasion Attack
- Certified Robustness
- Empirical Robustness

Deep Neural Network-based Network Traffic Classifier

- Workflow of the DNN-based Network Intrusion Detector (NID)



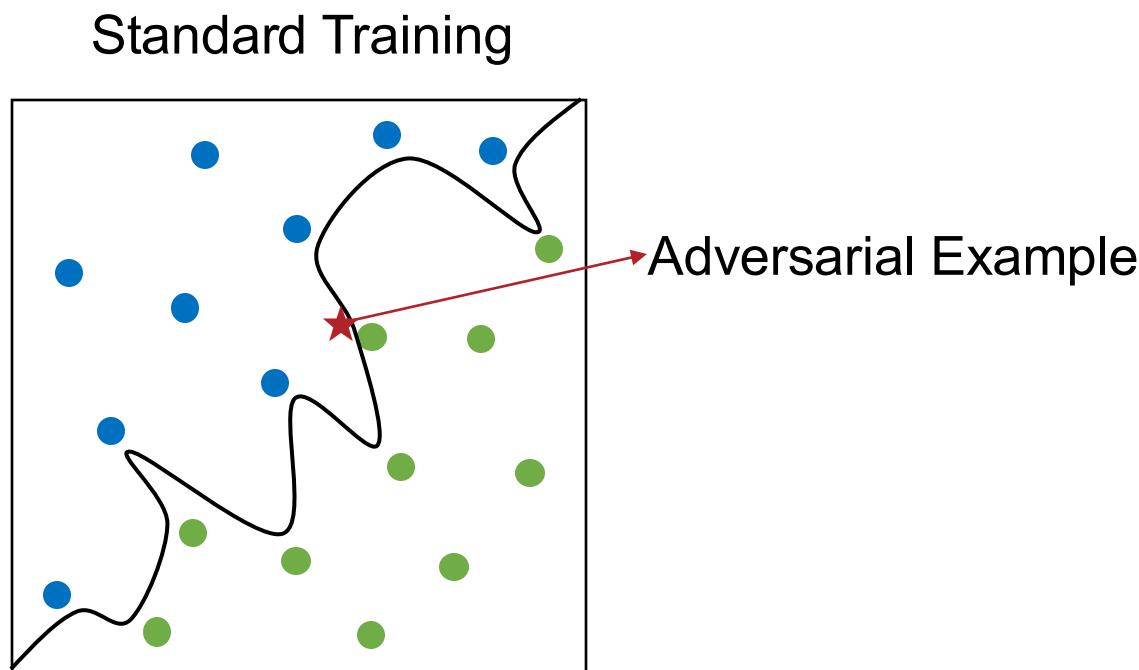
- Traffic Data includes both Numeric and Non-numeric Values (e.g. protocol, network service, timestamp, etc.)
 - First, transform the raw network traffic vector x_{raw} into a numerical feature vector x_{num} .
 - Then, normalize it into a feature vector x in a continuous real number range.

Threats to Deep Neural Networks (DNNs)

- Standard Train a Base Classifier F

- Optimization objective of standard training

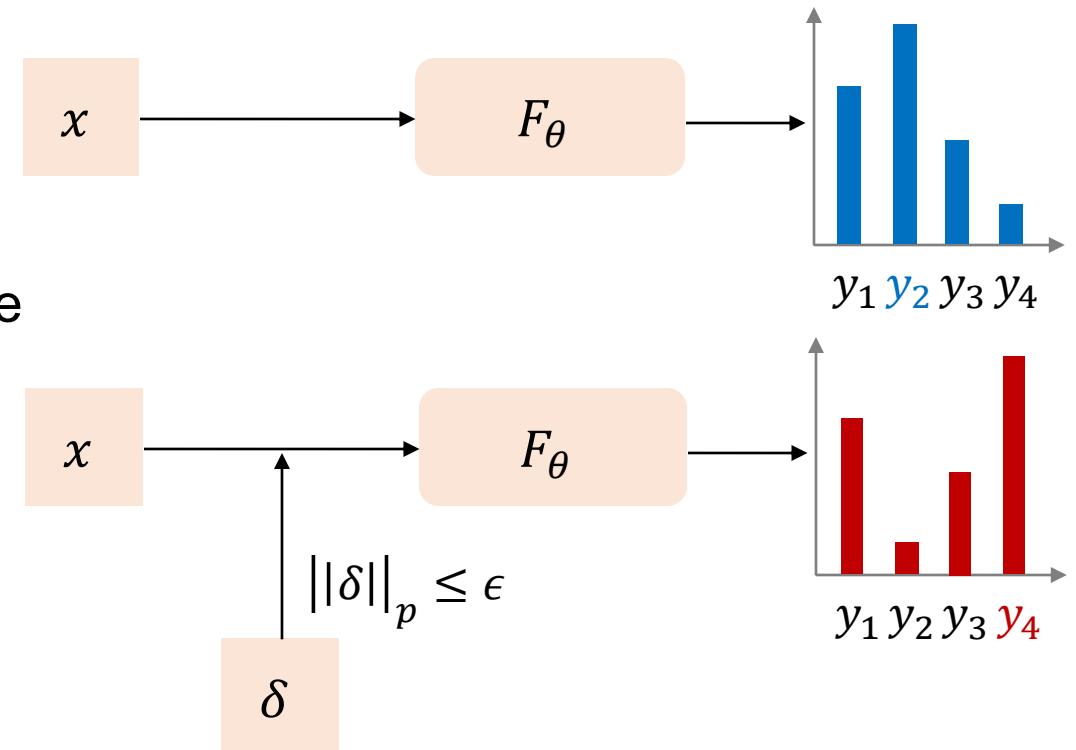
$$\min_{\theta} \mathbb{E}_{(x, y_{true}) \sim \mathcal{D}_{train}} [\mathcal{L}(F_{\theta}(x), y_{true})]$$



- Evasion Attack with Adversarial Example ($x + \delta$)

- Optimization objective of untargeted attack

$$\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(F_{\theta}(x + \delta), y_{true})$$

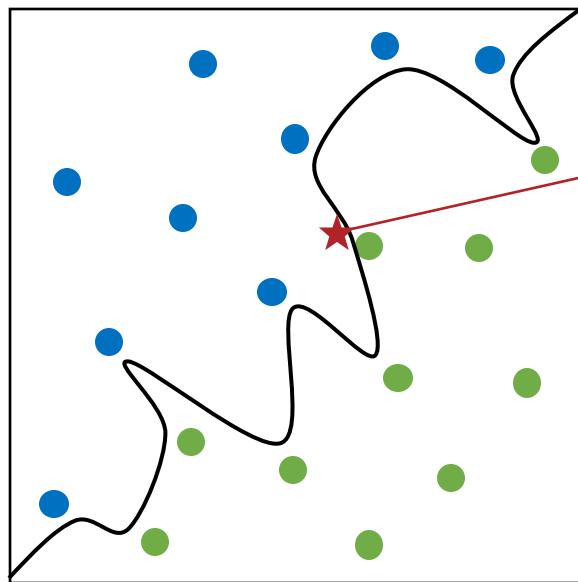


Empirical Defense vs. Certified Defense

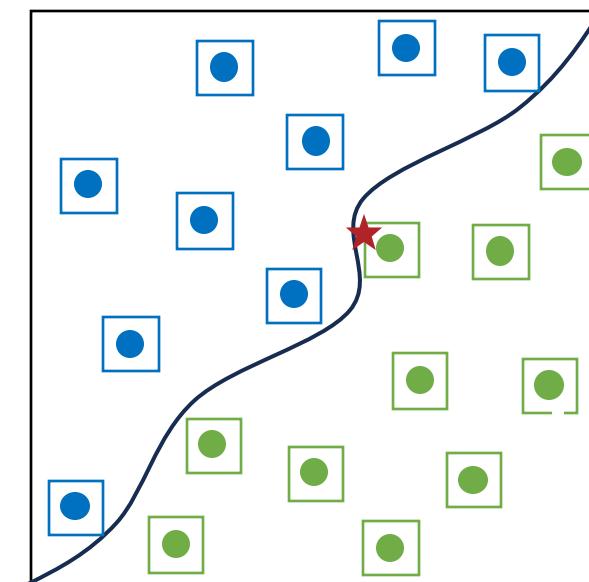
- Perspective of Robust Defense for Deep Neural Networks (DNNs)

- Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
- Certified Defense
 - Provide the certified robust radius as the robustness certification of the predicted output.

Standard Training



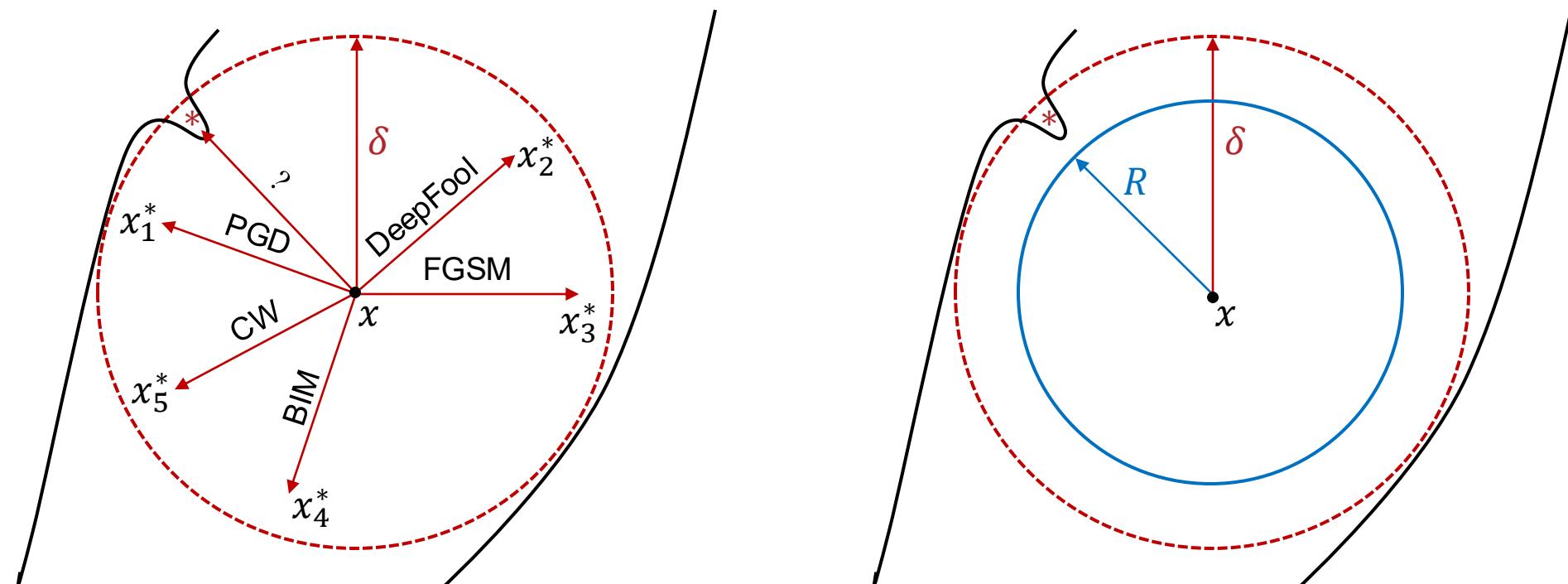
Adversarial Training



Empirical Defense vs. Certified Defense

- Perspective of Robust Defense for Deep Neural Networks (DNNs)

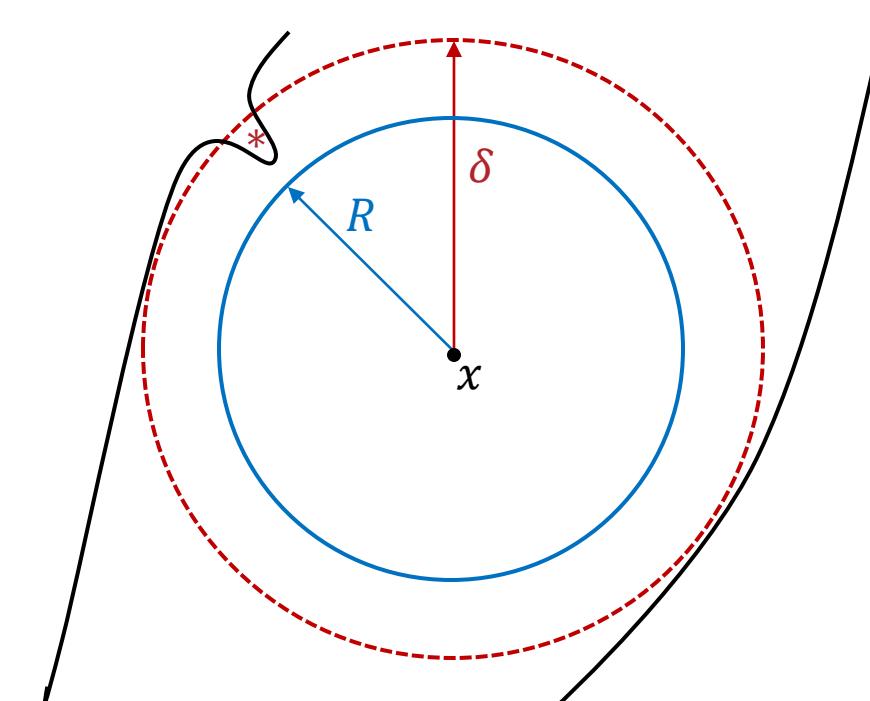
- Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
- Certified Defense
 - Provide the certified robust radius R as the robustness certification of the predicted output.



Empirical Defense vs. Certified Defense

- Perspective of Robust Defense for Deep Neural Networks (DNNs)

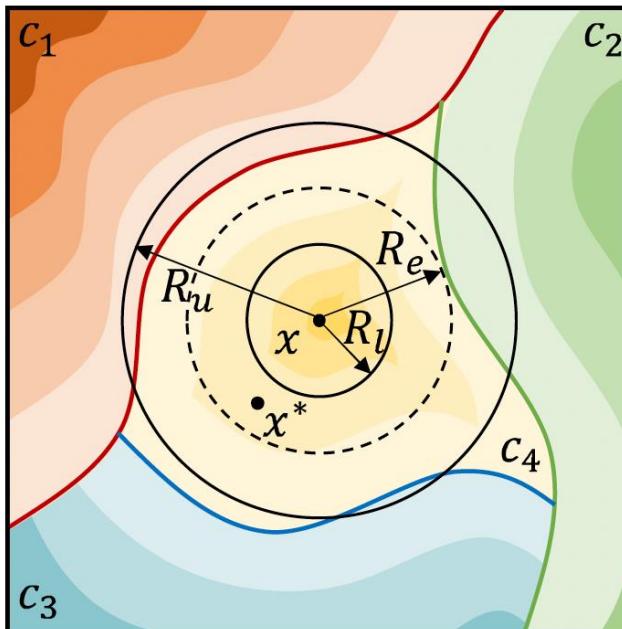
- Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
- Certified Defense
 - Provide the certified robust radius R as the robustness certification of the predicted output.
 - Robustness Guarantee
 - ✓ For input x , predictions of classifier F on perturbed data within an l_p norm-measured radius R around x , are guaranteed to remain consistent.
 - ✓ That is, any small perturbation δ to x within this region, including adversarial attacks, will not change the prediction results.



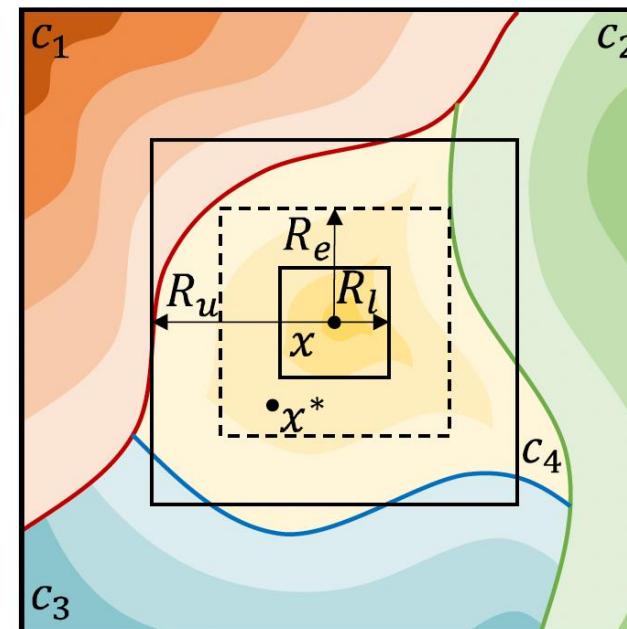
Certified Defense

- l_p Norm-bounded Certified Radius of DNN-based Multi-class Classifier on the Input x

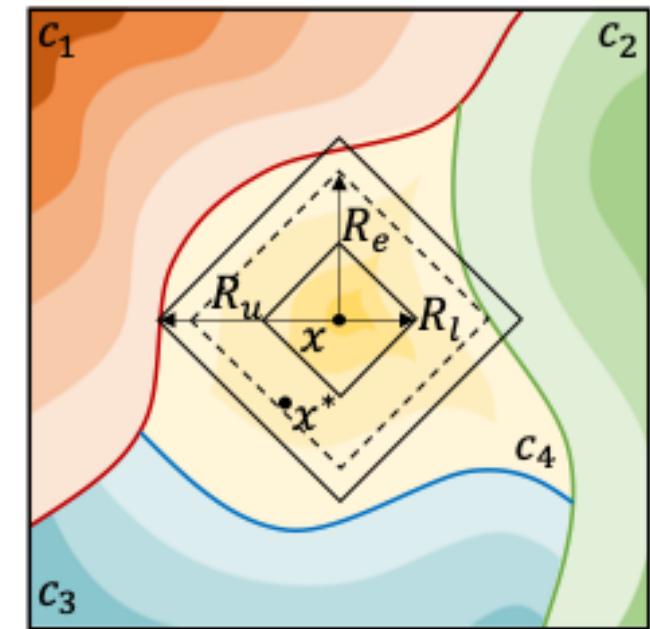
- Multiple Norm Types: l_2 norm, l_∞ norm, l_1 norm,
- Exact Robust Radius: R_e
- Upper/ Lower Bound of Exact Robust Radius: R_u, R_l



(a) $\|\delta\|_2 < R$



(b) $\|\delta\|_\infty < R$



(c) $\|\delta\|_1 < R$

Certify Robustness of DNN-based Network Traffic Classifiers

- Motivation

- Certified defense efforts for network intrusion detection have been minimal, only BARS (NDSS'23).
- The l_2 robustness guarantee is relatively loose and lacks certification for other l_p certified radii.

- Problems to be solved:

- Pro1: Define a certified radius that can bound heterogeneous network traffic features.
- Pro2: Expend the certified robust region to tighten the robustness guarantee.
- Pro3: Provide the multiple l_p norms-bounded robustness guarantees of the model.

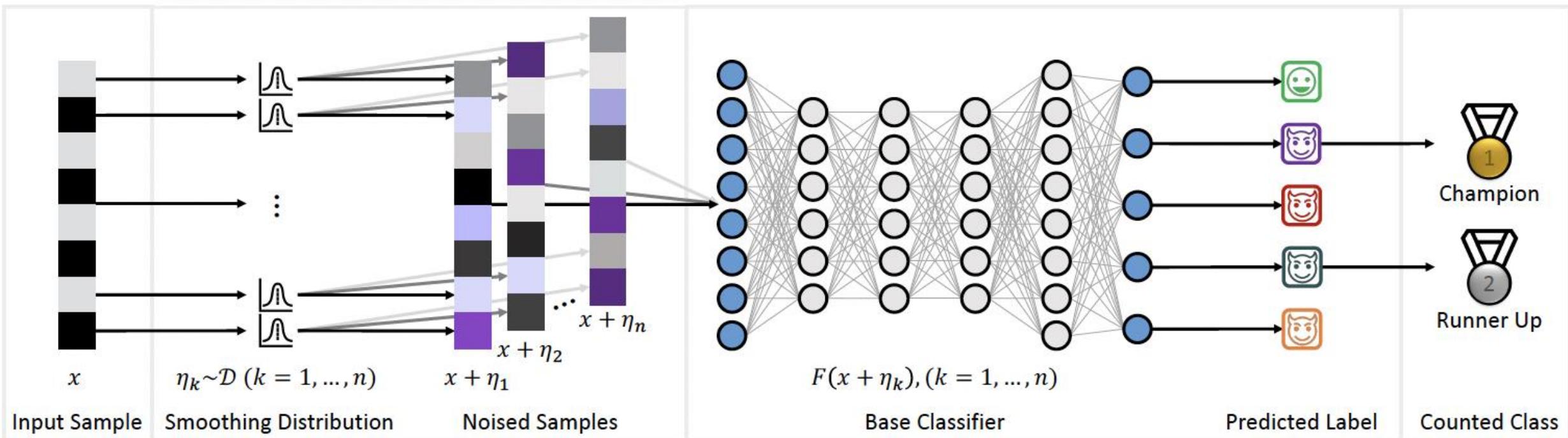
- Core Idea:

- Extend the real-value certified radius R to a vector $(R_1, \dots, R_d) \in \mathbb{R}^d$, where R_i denotes the dimensional certified radius for the i -th feature x_i of the heterogeneous input x .
- Introduce the multiple order information of the smoothed classifier to expand the certified region.
- Align the sampling area of smoothing distribution with the l_p -measured surroundings of the input.

Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

- Framework of Proposed Multi-Order Adaptive Randomized Smoothing (MARS)

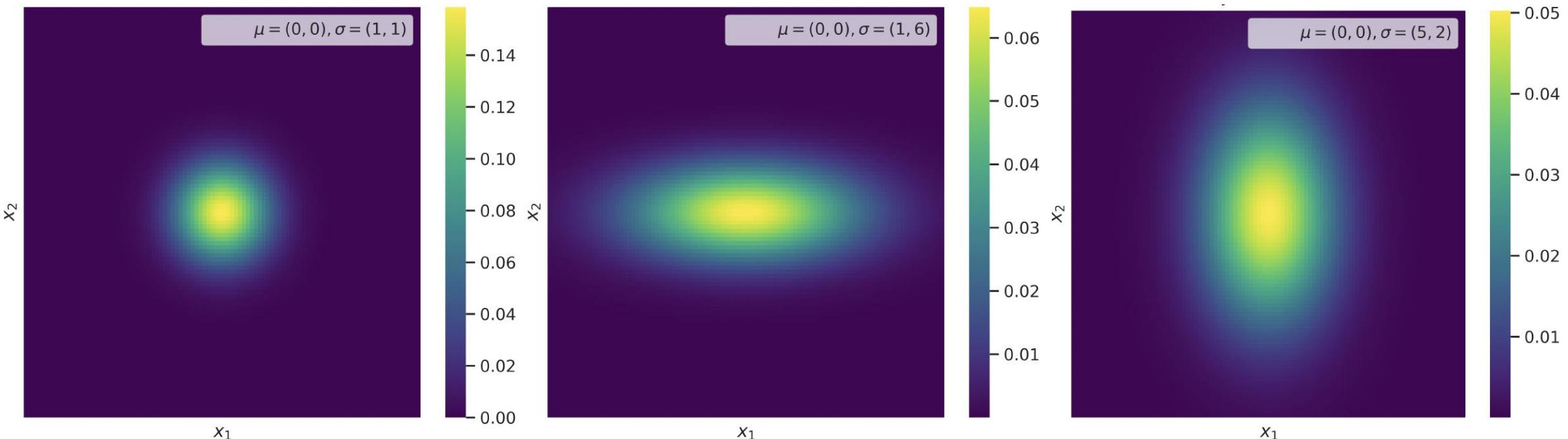
- Prediction Procedure
 - Sampling $n_k = n_{small}$ noise data → Predict the category of the input x .
- Certification Procedure
 - Sampling $n_k = n_{large}$ noise data → Calculate the robust radius R of the model on the input x .



Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

- Phase 1: Smoothing Distribution Parameters Optimization

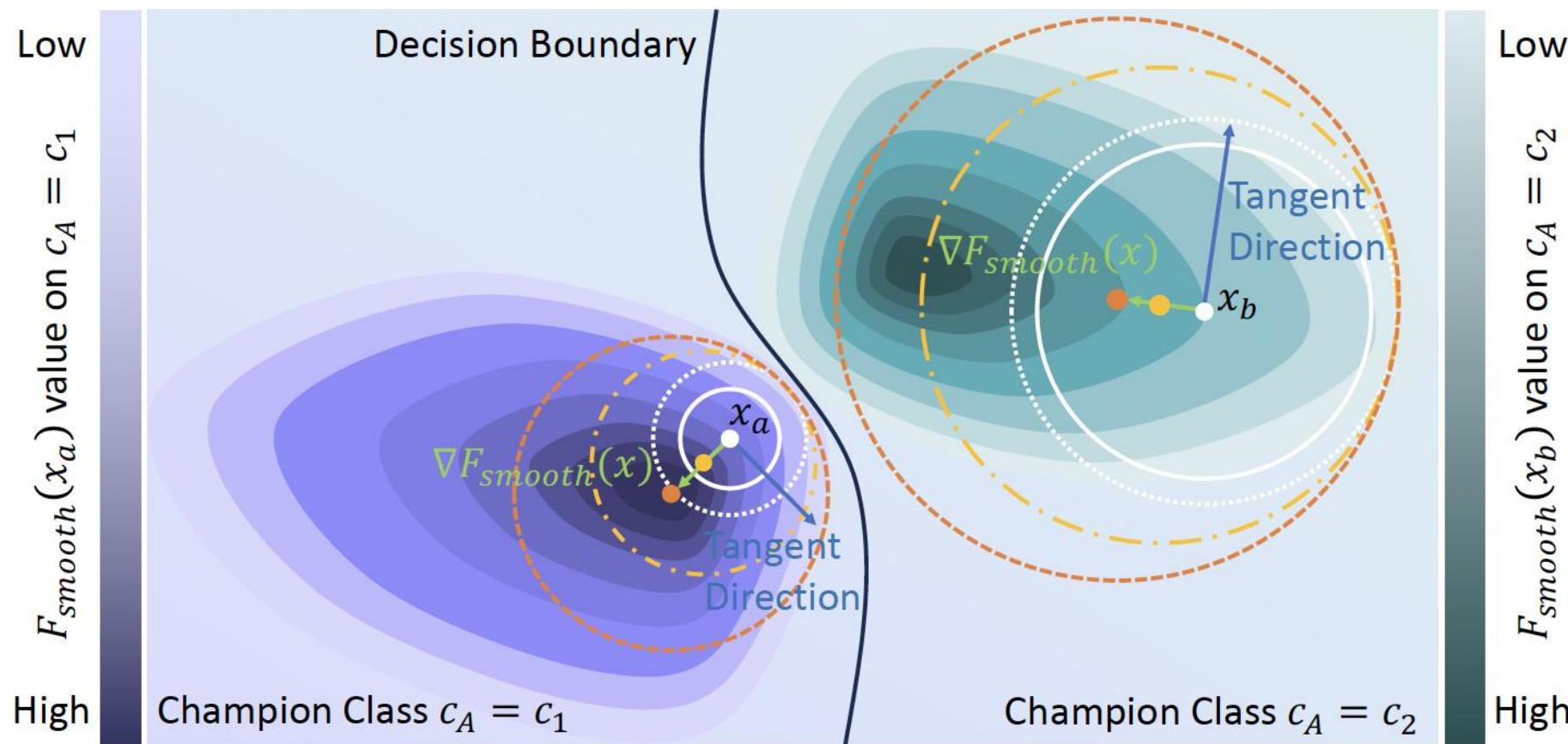
- Distribution Shape Optimization.
 - Encourage noised samples to be near the decision boundary of the classifier for x .
- Distribution Scale Optimization.
 - Expand the noise sampling area by adjusting the smoothing distribution's scalar parameter.



Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

- Phase 2: Multi-order Information-based Certified Robust Radius Calculation

- Zero-order Output Probability Information-based Certified Radius Calculation
- First-order Gradient Information-based Certified Radius Extension



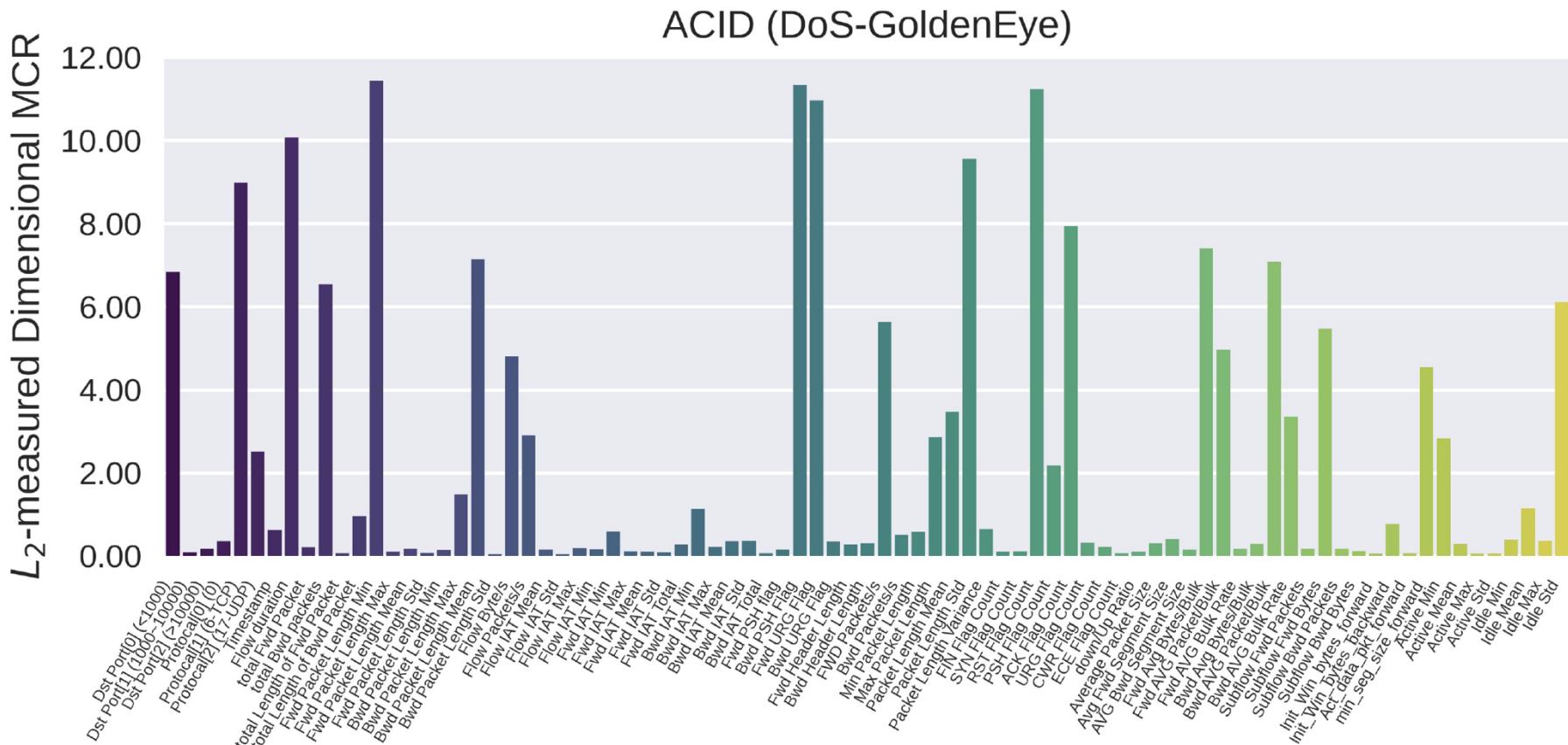
Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

- Phase 3: Dimensional Robust Radius Weight Calculation Calculation

- Dimensional Feature Sensitivity Analysis
- Dimensional Radius Contribution Quantification

$$s_i = d(f_\theta^c(x)) / d(x_i) \quad \quad s = (s_1, \dots, s_d)$$

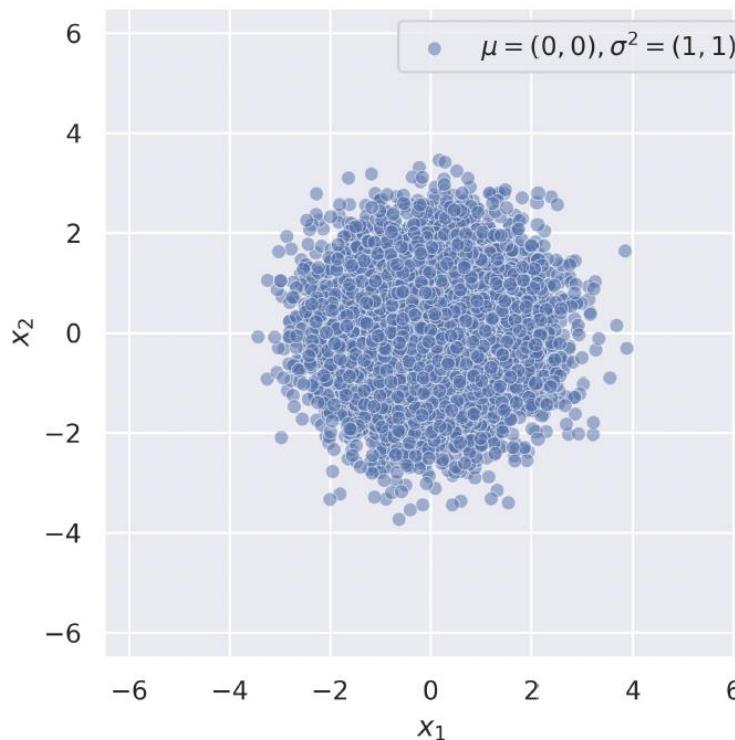
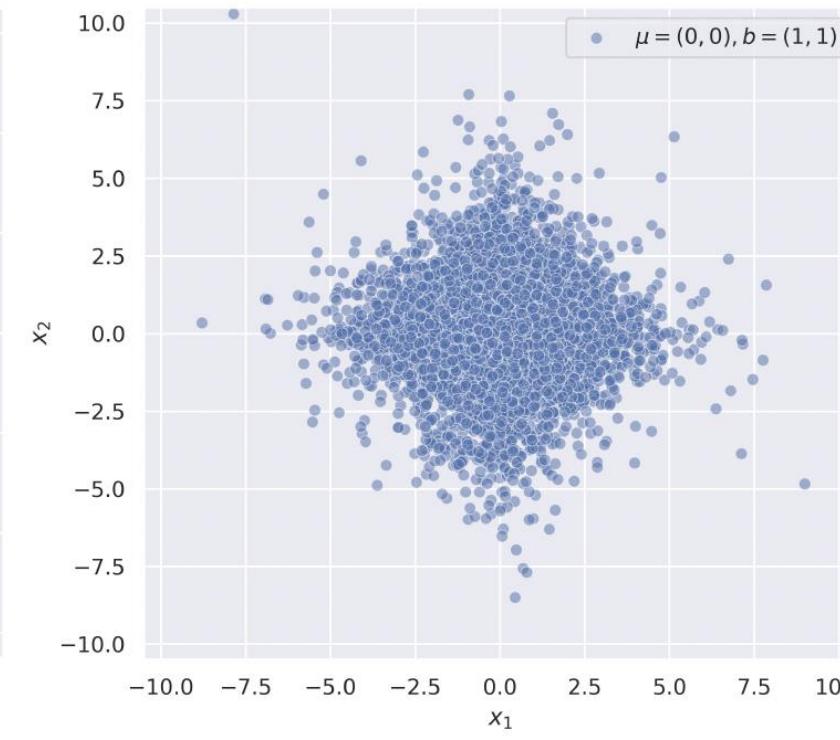
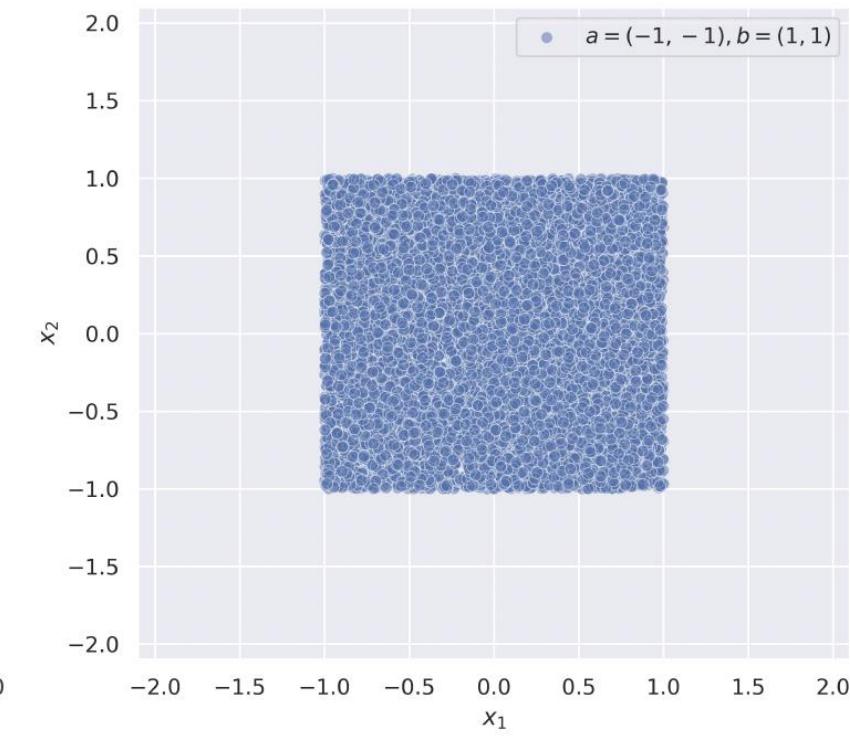
$$R_i = w_i \times R, w_i = \frac{R_i}{R} = \frac{1/d}{\tilde{s}_i} = \frac{1}{d\tilde{s}_i}$$



Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

● Smoothing Distribution Diversity

- Gaussian Distribution aligns with l_2 norm-bounded certified region
- Laplacian Distribution aligns with l_1 norm-bounded certified region
- Uniform Distribution aligns with l_∞ norm-bounded certified region



Experimental Setup

● Dataset

- Three datasets created from CIC-IDS-2018

Dataset	DoS-Hulk-Drift Dataset		Infiltration-Drift Dataset		Diverse-Intrusions Dataset	
	Class	Number	Class	Number	Class	Number
Training	Benign	52996	Benign	52996	Benign	52996
	SSH-Bruteforce	9385	SSH-Bruteforce	9385	FTP-Bruteforce	12590
	Infiltration	7390	DoS-Hulk	34789	DDoS-HOIC	53476
Test	-	-	-	-	Bot	22584
	Benign	13249	Benign	13249	Benign	13249
	SSH-Bruteforce	2346	SSH-Bruteforce	2346	FTP-Bruteforce	3148
	Infiltration	1894	DoS-Hulk	8697	DDoS-HOIC	13369
	DoS-Hulk	43486	Infiltration	9327	Bot	5646

● Model

- CADE

Contrastive Autoencoder
for Drifting detection and
Explanation
(USENIX 2021)

- ACID

Adaptive Clustering-
based Intrusion Detection
(INFOCOM 2021)

Experimental Setup

● Attack Configuration

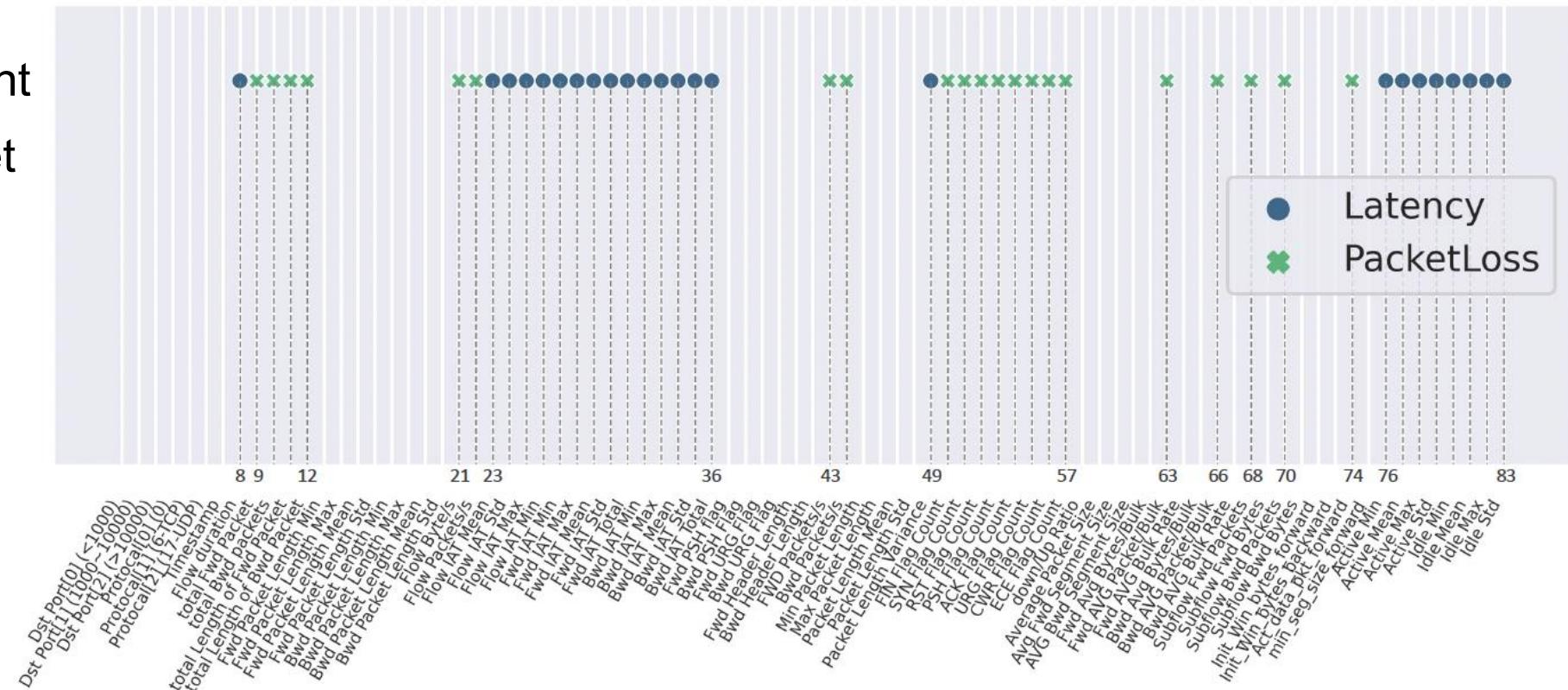
➤ Evasion Attack

- PGD: Projected Gradient Descent
- EAD: Elastic-Net Attack to DNN

➤ Natural Corruption

- Latency
- Packet Loss

Features Perturbed under Different Natural Corruptions



Experimental Setup

● Attack Configuration

➤ Evasion Attack

- PGD: Projected Gradient Descent
- EAD: Elastic-Net Attack to DNN

➤ Natural Corruption

- Latency
- Packet Loss

Perturbed Features under Latency

No	Feature Name	No	Feature Name
8	<i>Flow_Duration</i>	34	<i>Bwd_IAT_Mean</i>
23	<i>Flow_IAT_Mean</i>	35	<i>Bwd_IAT_Std</i>
24	<i>Flow_IAT_Std</i>	36	<i>Bwd_IAT_Total</i>
25	<i>Flow_IAT_Max</i>	50	<i>Packet_Length_Variance</i>
26	<i>Flow_IAT_Min</i>	76	<i>Active_Min</i>
27	<i>Fwd_IAT_Min</i>	77	<i>Active_Mean</i>
28	<i>Fwd_IAT_Max</i>	78	<i>Active_Max</i>
29	<i>Fwd_IAT_Mean</i>	79	<i>Active_Std</i>
30	<i>Fwd_IAT_Std</i>	80	<i>Idle_Min</i>
31	<i>Fwd_IAT_Total</i>	81	<i>Idle_Mean</i>
32	<i>Bwd_IAT_Min</i>	82	<i>Idle_Max</i>
33	<i>Bwd_IAT_Max</i>	83	<i>Idle_Std</i>

Experimental Setup

● Attack Configuration

➤ Evasion Attack

- PGD: Projected Gradient Descent
- EAD: Elastic-Net Attack to DNN

➤ Natural Corruption

- Latency
- Packet Loss

Perturbed Features under Packet Loss

No	Feature Name	No	Feature Name
9	<i>Total_Fwd_Packet</i>	53	<i>PSH_Flag_Count</i>
10	<i>Total_Bwd_packets</i>	54	<i>ACK_Flag_Count</i>
11	<i>Total_Length_of_Fwd_Packet</i>	55	<i>URG_Flag_Count</i>
12	<i>Total_Length_of_Bwd_Packet</i>	56	<i>CWR_Flag_Count</i>
21	<i>Flow_Byte/s</i>	57	<i>ECE_Flag_Count</i>
22	<i>Flow_Packets/s</i>	63	<i>Fwd_AVG_Packet/Bulk</i>
43	<i>FWD_Packets/s</i>	66	<i>Bwd_AVG_Packet/Bulk</i>
44	<i>Bwd_Packets/s</i>	68	<i>Subflow_Fwd_Packets</i>
50	<i>FIN_Flag_Count</i>	70	<i>Subflow_Bwd_Packets</i>
51	<i>SYN_Flag_Count</i>	74	<i>Act_data_pkt_forward</i>
52	<i>RST_Flag_Count</i>	-	-

Experimental Setup

● Comparison of Certified Defense Methods

- VRS: Vanilla Randomized Smoothing (ICML 2019) → designed for Image
- FRS: First Order-based Randomized Smoothing (NeurIPS 2020) → designed for Image
- BARS: Boundary-Adaptive Randomized Smoothing (NDSS 2023) → designed for Traffic

Method	Heterogeneity	Universality	Robustness Guarantee Diversity			Adversarial Attacks			Natural Corruptions	
			l_2 Radius	l_1 Radius	l_∞ Radius	l_2 Attack	l_1 Attack	l_∞ Attack	Latency	Loss
VRS [17]	○	●	●	○	○	○	○	○	○	○
FRS [35]	○	●	●	●	●	○	○	○	○	○
BARS [18]	●	●	●	○	○	○	○	●	○	○
MARS	●	●	●	●	●	●	●	●	●	●

[17] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning (ICML). 1310–1320.

[35] Jeet Mohapatra, Ching-Yun Ko, Tsui-WeiWeng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2020. Higher-order certification for randomized smoothing. In Advances in Neural Information Processing Systems (NeurIPS). 4501–4511.

[18] Kai Wang, Zhiliang Wang, Dongqi Han, Wenqi Chen, Jiahai Yang, Xingang Shi, and Xia Yin. 2023. BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems. In Network and Distributed Systems Security (NDSS) Symposium.

Experimental Setup

● Evaluation Metrics

➤ Certified Robustness

- Mean Certified Radius
- Certified Accuracy

$$\text{Mean Certified Radius (MCR)} = \frac{1}{N} \sum_{i=1}^N R_i$$

$$\text{Certified Accuracy (CerAcc)} = \frac{N_{(F_{\text{smooth}}(x) = y_{\text{true}}) \& (R \geq R_{\text{given}})}}{N}$$

➤ Empirical Robustness

- Robust Accuracy on Adversarial (Malicious) Examples
- Robust Accuracy on Corrupted (Malicious & Benign) Examples

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$\text{Robust Accuracy (RobAcc)} = \frac{N_{(F_{\text{smooth}}(x^*) = y_{\text{true}})}}{N} = \frac{TP + TN}{TP + TN + FP + FN}$$

➤ Regular Predictive Performance

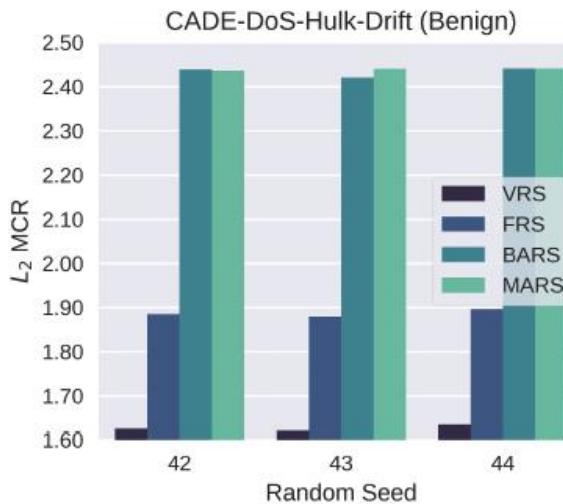
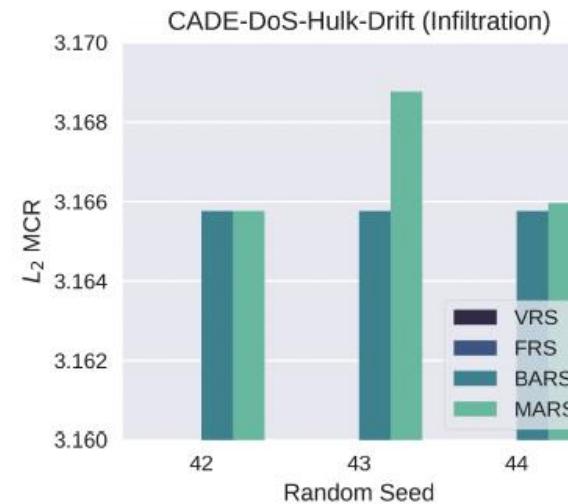
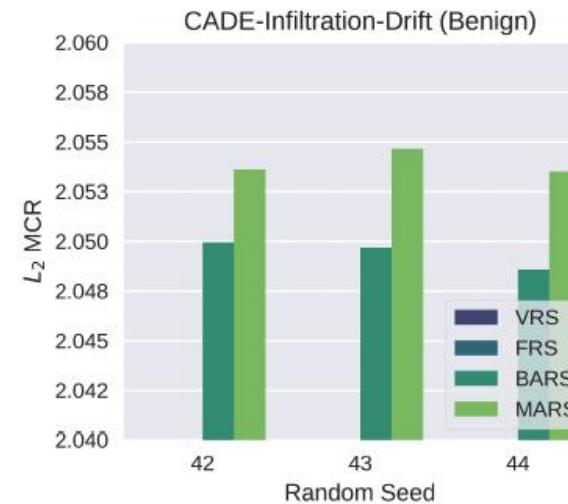
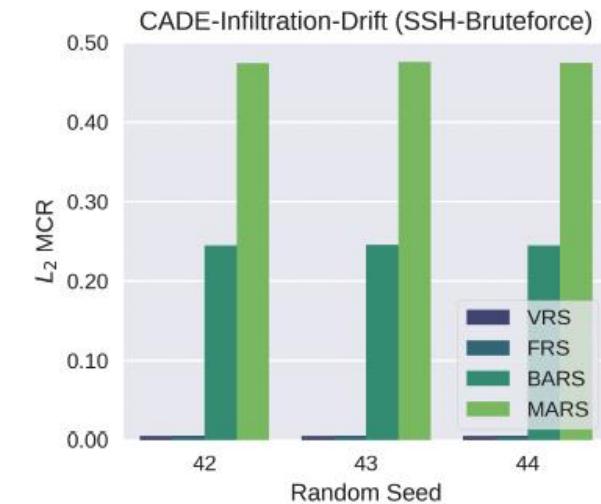
- Clean Accuracy

$$\text{Clean Accuracy (CleAcc)} = \frac{N_{(F_{\text{smooth}}(x) = y_{\text{true}})}}{N}$$

Evaluation Results and Analysis

- **Exp 1: Comparison of l_2 -bounded Certified Robustness with SOTA Method**

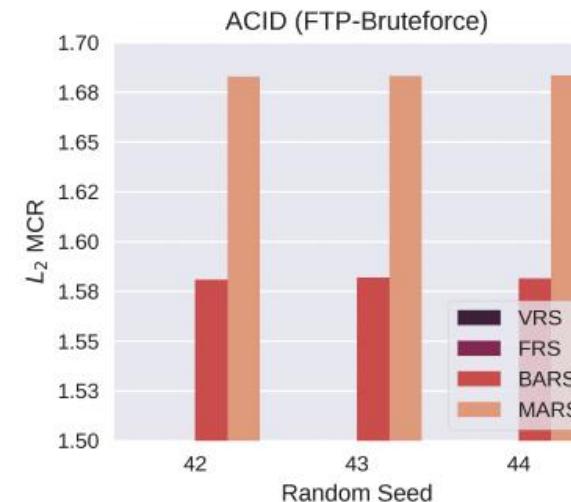
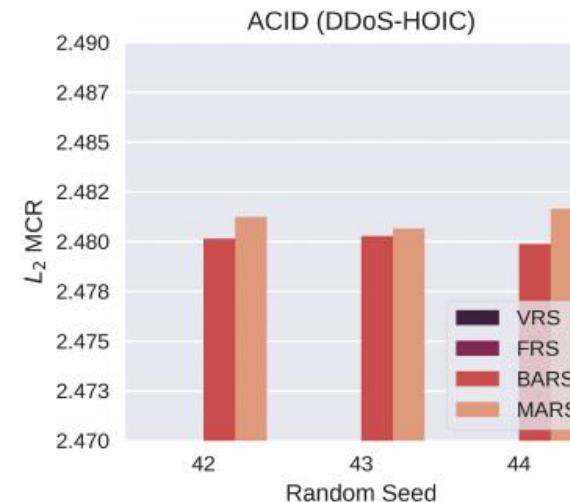
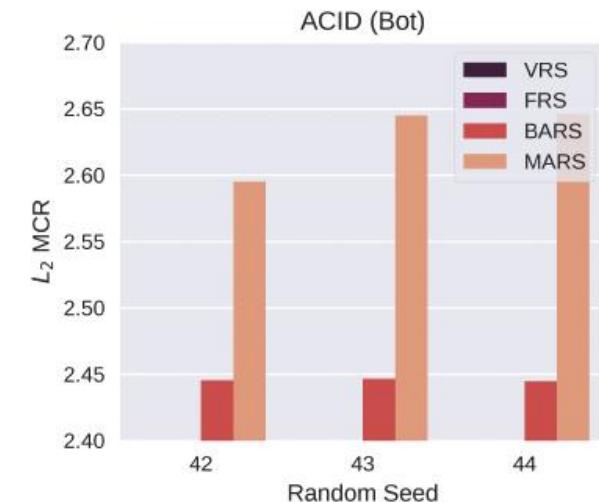
- Exp Setup: $n_{small} = 100$, $n_{large} = 10,000$. Compare the l_2 overall MCR R of the model by category.
- Observation: ***MARS always outperforms certified defense baselines VRS, FRS, and BARS.***
 - For CADE trained on DoSHulk-Drift dataset, MARS shows a 0.23% and 0.03% higher MCR in Benign and Infiltration classes, respectively, than SOTA BARS.
 - For CADE trained on Infiltration-Drift dataset, MARS exhibits a 0.22%, 93.66%, and 0.2% MCR increase in Benign, SSH-Bruteforce, and DoS-HULK categories compared to BARS.



Evaluation Results and Analysis

- **Exp 1: Comparison of l_2 -bounded Certified Robustness with SOTA Method**

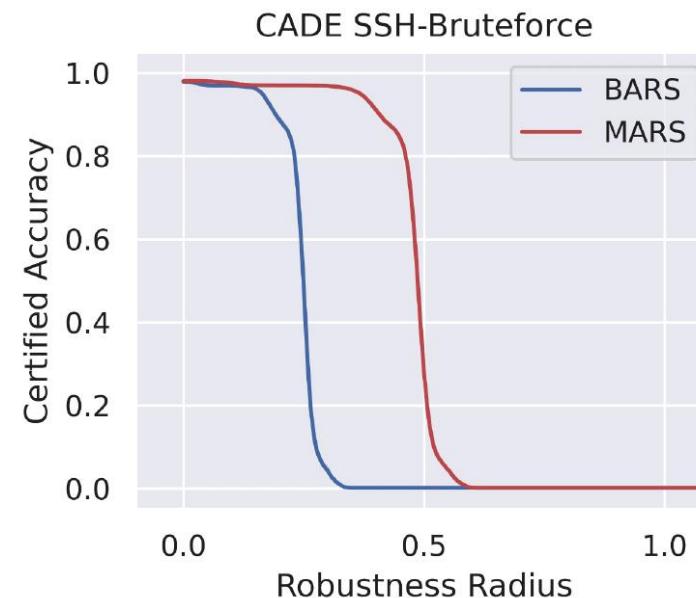
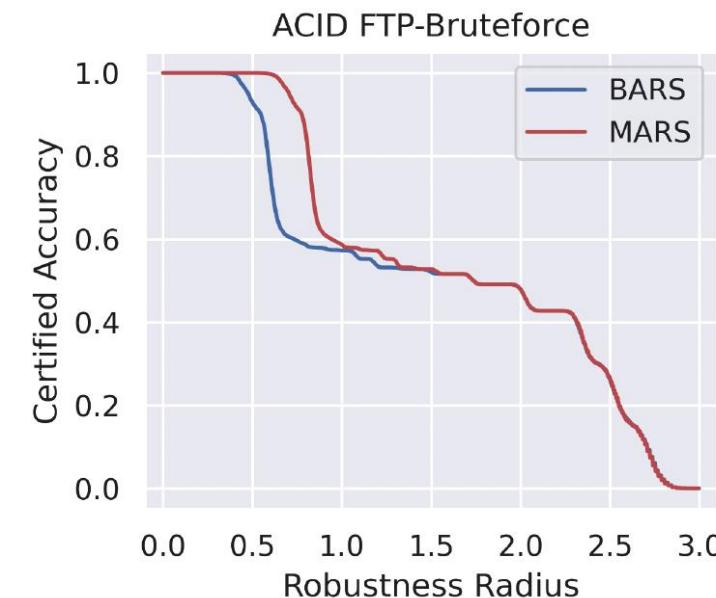
- Exp Setup: $n_{small} = 100$, $n_{large} = 10,000$. Compare the l_2 overall MCR R of the model by category.
- Observation: ***MARS always outperforms certified defense baselines VRS, FRS, and BARS.***
 - For ACID trained on Diverse Intrusion dataset, MARS exhibits a 1.75%, 6.44%, 0.04%, and 7.49% MCR increase in Benign, FTP-Bruteforce, DDoS-HOIC, and Bot categories compared to SOTA Certified Defense BARS.



Evaluation Results and Analysis

- **Exp 1: Comparison of l_2 -bounded Certified Robustness with SOTA Method**

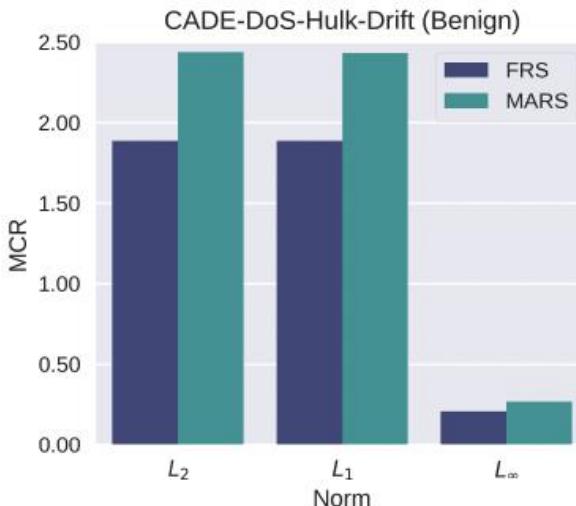
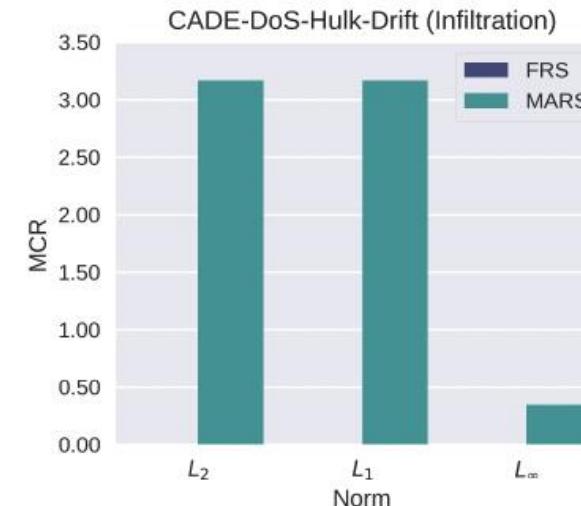
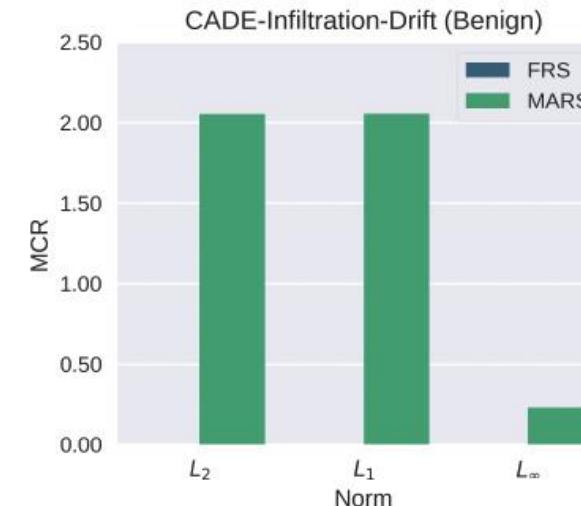
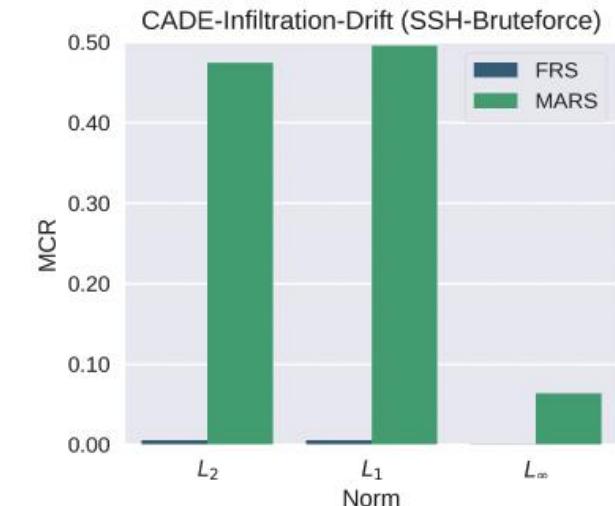
- Exp Setup: Compare the Certified Accuracy of the model w.r.t the l_2 -bounded certified radius.
- Observation: ***MARS demonstrated the certified robustness of the model in a larger region.***
 - For CADE, MARS maintains 100% accuracy until the MCR threshold reaches 0.4, while the that of the SOTA methods begins to drop sharply when the threshold just exceeds 0.15.
 - For ACID, MARS shows significant advantages over SOTA until the MCR reaches 1.5.



Evaluation Results and Analysis

● Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method

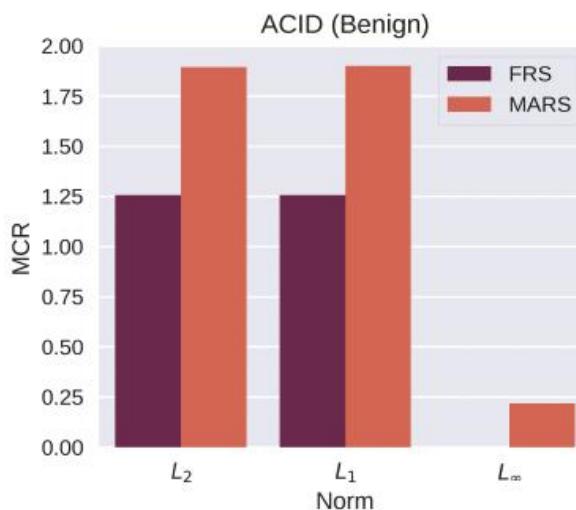
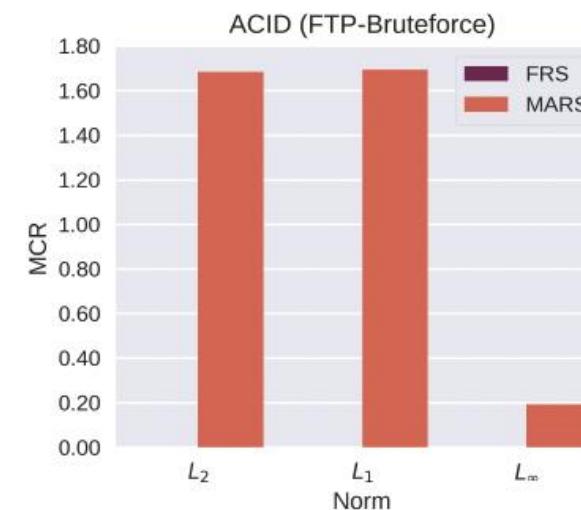
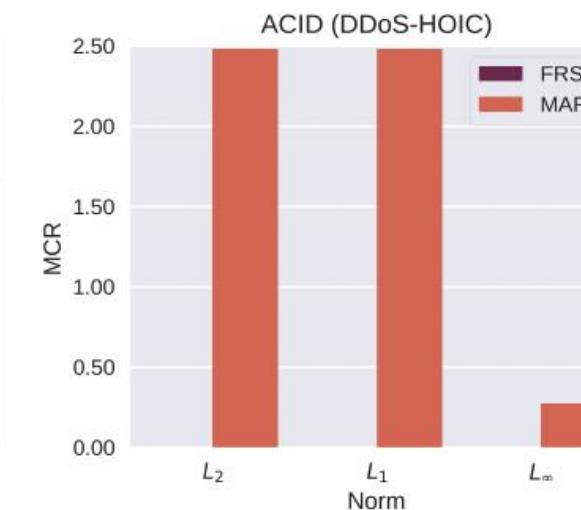
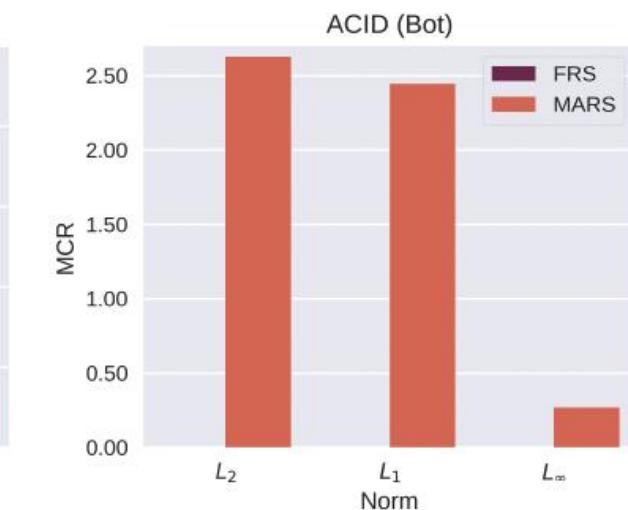
- Exp Setup: $n_{small} = 100$, $n_{large} = 10,000$. Compare the l_1 , l_∞ MCR of the model by category with FRS, since neither VRS nor BARS supports l_1 -bounded and l_∞ -bounded robustness certification.
- Observation: ***MARS consistently provides larger l_p -bounded radius compared to FRS.***
 - FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network traffic features, MARS produces non-trivial l_2 , l_1 , and l_∞ radii.
 - For CADE trained on DoSHulk-Drift dataset, MARS outperforms FRS by 29.25%, 28.95%, and 28.72% in l_2 , l_1 , and l_∞ radii on Benign, respectively.



Evaluation Results and Analysis

● Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method

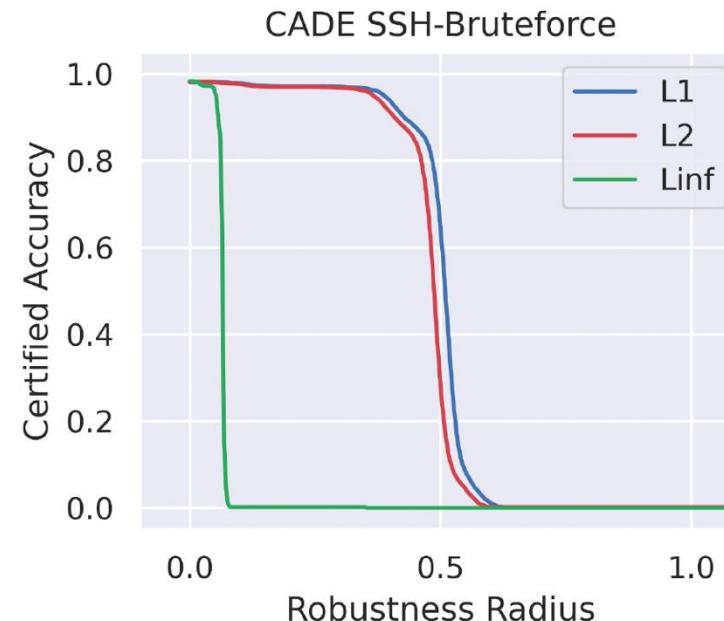
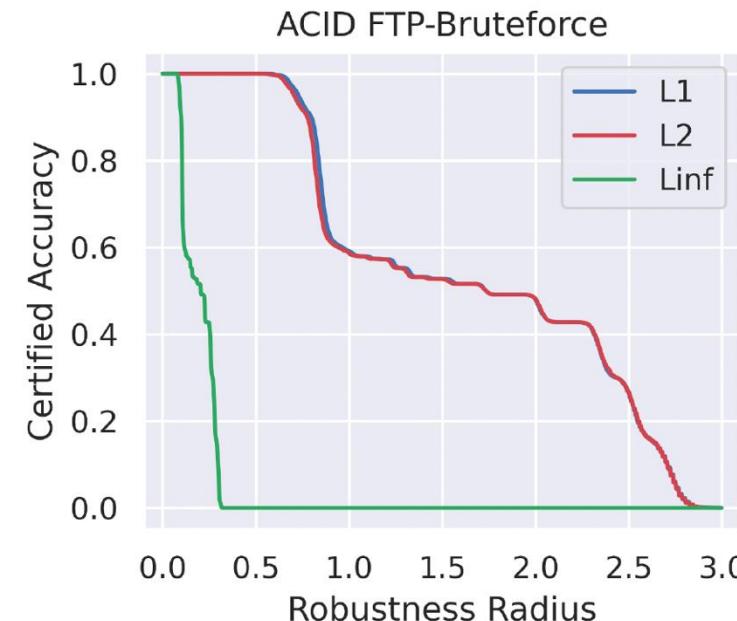
- Exp Setup: $n_{small} = 100$, $n_{large} = 10,000$. Compare the l_1 , l_∞ MCR of the model by category with FRS, since neither VRS nor BARS supports l_1 -bounded and l_∞ -bounded robustness certification.
- Observation: ***MARS consistently provides larger l_p -bounded radius compared to FRS.***
 - FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network traffic features, MARS produces non-trivial l_2 , l_1 , and l_∞ radii.
 - For ACID trained on Diverse Intrusion dataset, MARS outperforms FRS by 50.78% and 51.32% in l_2 and l_1 radii on Benign, respectively.



Evaluation Results and Analysis

- **Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method**

- Exp Setup: Compare the Certified Accuracy of the model w.r.t the l_p -bounded certified radius.
- Observation: **l_2 radius is usually smaller than the l_1 radius and larger than the l_∞ radius.**
 - At the same radius, the area bounded by l_1 norm should be the smallest, and the area defined by l_∞ should be the largest.
 - Different norm-bounded radii calculated experimentally are consistent with theoretical results.



Evaluation Results and Analysis

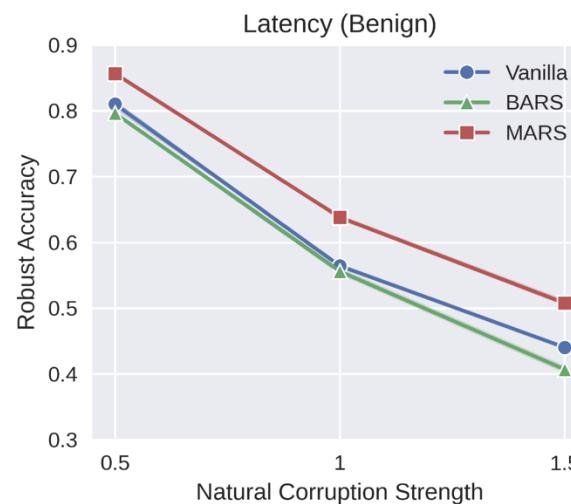
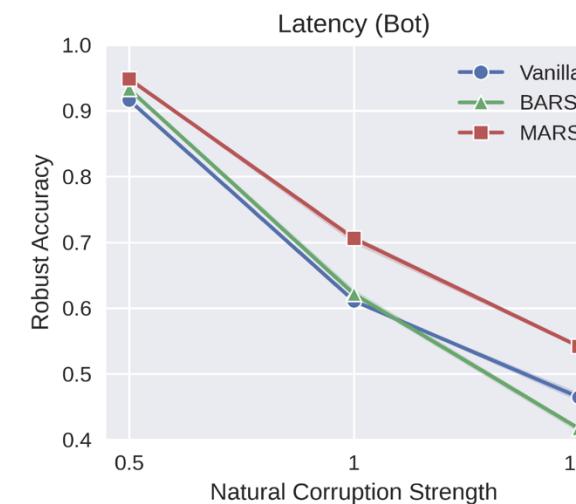
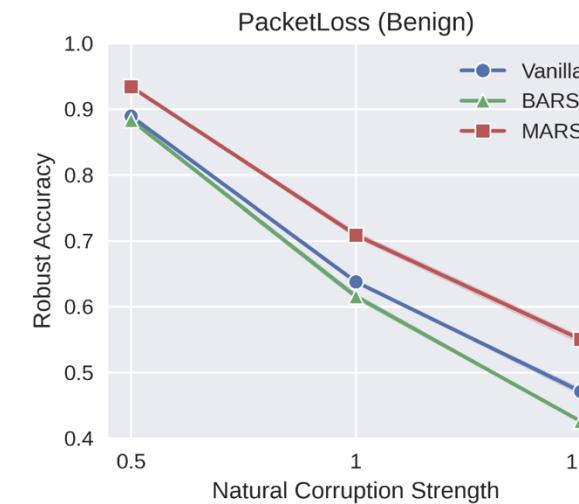
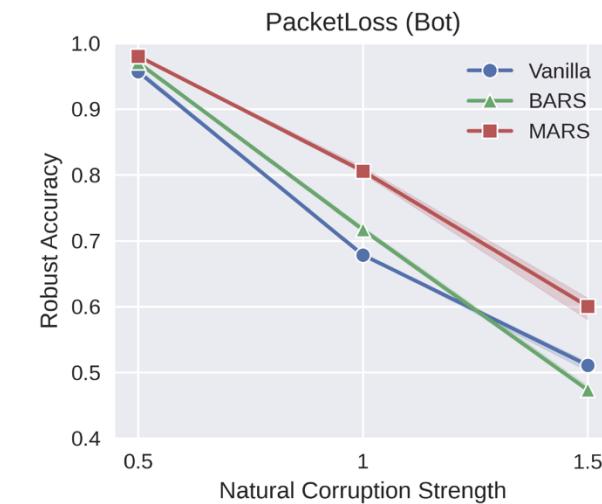
- **Exp 3: Comparison of Empirical Robustness against Evasion Attacks with SOTA Method**

- Exp Setup: Attack ACID with PGD and EAD adversarial Bot. Iteration is 20. For l_2 -PGD and l_1 -EAD, perturbation limit ϵ is 1.0, with per-step budget ϵ_s of 0.75. For l_∞ -PGD, ϵ is 0.2 and ϵ_s is 0.1.
- Observation: **MARS surpasses SOTA defense in robustness against evasion attacks.**
 - MARS improves robust accuracy over the Vanilla detector (base model without defense) by 13.79% for l_2 -PGD, 33.94% for l_∞ -PGD, and 10.01% for l_1 -EAD.
 - MARS also outperforms SOTA BARS, boosting robust accuracy by 1.7% for l_2 -PGD, 7.17% for l_∞ -PGD, and 10.11% for l_1 -EAD.
 - MARS well retain the clean accuracy of the ACID on clean Bot samples, reaching 100%.

Method	CleanAcc/Recall on Clean Bot (%)	RobustAcc/Recall on Adversarial Bot (%)		
		l_2 -PGD	l_∞ -PGD	l_1 -EAD
Vanilla	100.00±00.00	83.95±00.00	55.02±00.01	00.27±00.00
BARS [18]	100.00±00.00	96.04±00.05	81.78±00.20	00.16±00.01
MARS	100.00±00.00	97.74±00.13	88.95±00.31	10.28±00.06

Evaluation Results and Analysis

- **Exp 4: Comparison of Empirical Robustness against Natural Corruptions with SOTA Method**
 - Exp Setup: Generate natural corrupted samples from clean benign/malicious samples using Latency and PacketLoss. Use random noise following a Gaussian distribution with mean 0. Adjust the standard deviation σ in $\{0.5, 1.0, 1.5\}$ to mimic the different corruption strengths.
 - Observation: ***MARS surpasses SOTA in robustness against various corruption intensities.***
 - MARS outperforms SOTA BARS in robust accuracy, exceeding it by 8.53% on corrupted Benign and 7.5% on corrupted Bot.



Evaluation Results and Analysis

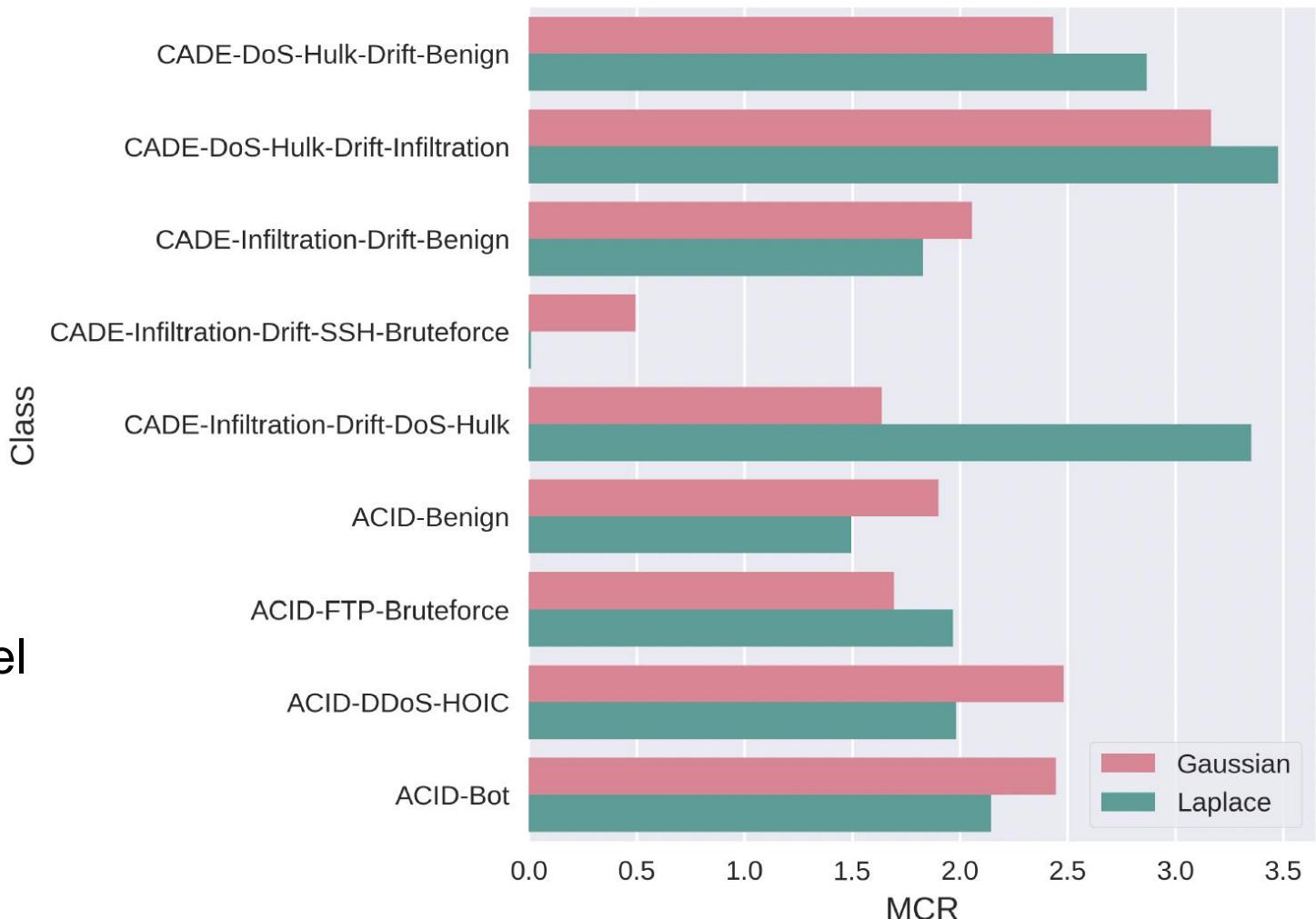
● Exp 5: l_p Certified Robustness with Different Smoothing Distributions

➤ Exp Setup:

- All baselines use Gaussian as the smoothing distribution.
- MARS considers distribution diversity and sequentially uses Gaussian, Laplacian, and Uniform distributions.

➤ Observation:

- Different distributions each excel in different classes.
- Using a single distribution may miss a tighter certified radius.



Evaluation Results and Analysis

● Exp 6: Dimension-Wise Certified Robustness

- Exp Setup: MARS's Top-5 and bottom-5 dimension-wise radius of the ACID.
- Observation:
 - The model demonstrates greater sensitivity to *inter arrival time (IAT)*-related features while showing greater robustness to *forward packet length-related* features.
 - This finding is consistent with the previous observation that the vanilla ACID model exhibited significantly reduced robust accuracy on corrupted samples using Latency.

No	Radius	FeatureName	Description
24	0.0426	Flow_IAT_Std	Standard deviation time two flows.
20	0.0433	Bwd_Packet_Length_Std	Standard deviation size of packet in backward direction.
79	0.0488	Active_Std	Standard deviation time a flow was active before becoming idle.
72	0.0569	Init_Win_bytes_forward	Number of bytes sent in initial window in the forward direction.
78	0.0576	Active_Max	Maximum time a flow was active before becoming idle.
8	10.0741	Flow_Duration	Flow duration.
39	10.9644	Fwd_URG_Flag	Number of times URG flag was set in packets travelling in the forward direction (0 for UDP).
52	11.2367	RST_Flag_Count	Number of packets with RST.
38	11.3300	Bwd_PSH_Flag	Number of times PSH flag was set in packets travelling in the backward direction (0 for UDP).
13	11.4358	Fwd_Packet_Length_Min	Minimum size of packet in forward direction.
All	2.2305	MCR	Mean certified radius per class.

Summary

- **Contribution**

- Robustness Certification Framework
 - Proposed MARS, a novel certification framework to calculate the robust radius of DNN-based network intrusion detectors that requires no modification to model structure.
- Multi-Order Information Utilization
 - Introduced a method to expand certified regions by leveraging multi-order information of the classifier beyond zero-order techniques.
- Dimensional-Wise Robust Radius
 - Designed a dimensional robust radius calculation approach for inputs with heterogeneous features, like network traffic.
- New Threat Model
 - Extended empirical robustness evaluation of traffic classifier to account for natural corruption (e.g., Latency and Packet Loss) in addition to evasion attacks using adversarial examples.

Future Work

- **Target issues**

- Non- l_p Robustness Certification against Structural Perturbations
 - Different from the l_p -norm bounded changes of input features, for structural perturbations that change the overall structure or composition of the input (such as adding, deleting, or reordering nodes/edges in a graph), special non- l_p robustness certification is needed to evaluate and guide the model's robustness improvement.
- Robustness Certification for Multi-modal Models
 - Current certified defense techniques often face challenges in evaluating robustness across multiple data modalities. Designing a framework that can certify robustness by considering the interactions between heterogeneous and homogeneous data inputs simultaneously will be interesting.

Thank You!

Mengdie Huang^{1,2}, Yingjun Lin², Xiaofeng Chen¹, Elisa Bertino²

¹ Xidian University

² Purdue University

西安电子科技大学
XIDIAN UNIVERSITY

Q&A

Yingjun Lin (Link)
lin1368@purdue.edu