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⚫ Workflow of the DNN-based Network Intrusion Detector (NID)

➢ Traffic Data includes both Numeric and Non-numeric Values (e.g. protocol, network service, 

timestamp, etc.)

• First, transform the raw network traffic vector 𝑥𝑟𝑎𝑤 into a numerical feature vector 𝑥𝑛𝑢𝑚.

• Then, normalize it into a feature vector 𝑥 in a continuous real number range.

Deep Neural Network-based Network Traffic Classifier
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⚫ Evasion Attack with Adversarial Example (𝑥 + 𝛿)

➢ Optimization objective of untargeted attack

Threats to Deep Neural Networks (DNNs)

max
𝛿

𝑝
≤𝜖
ℒ(𝐹𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑟𝑢𝑒)

⚫ Standard Train a Base Classifier 𝐹

➢ Optimization objective of standard training

min
𝜃

𝔼 𝑥,𝑦𝑡𝑟𝑢𝑒 ~𝒟𝑡𝑟𝑎𝑖𝑛
[ℒ 𝐹𝜃(𝑥), 𝑦𝑡𝑟𝑢𝑒 ]

𝑥 𝐹𝜃

𝛿

𝑦1𝑦2𝑦3 𝑦4
𝛿

𝑝
≤ 𝜖

𝑥 𝐹𝜃

𝑦1𝑦2𝑦3 𝑦4

Standard Training

Adversarial Example



Empirical Defense vs. Certified Defense

Background Problem Solution Evaluation Conclusion 5

⚫ Perspective of Robust Defense for Deep Neural Networks (DNNs)

➢ Empirical Defense

• Improve the model's prediction accuracy in adversarial attacks through robust training.

➢ Certified Defense

• Provide the certified robust radius as the robustness certification of the predicted output.

Empirical Defense vs. Certified Defense

Adversarial TrainingStandard Training

Adversarial Example
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⚫ Perspective of Robust Defense for Deep Neural Networks (DNNs)

➢ Empirical Defense

• Improve the model's prediction accuracy in adversarial attacks through robust training.

➢ Certified Defense

• Provide the certified robust radius 𝑅 as the robustness certification of the predicted output.
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⚫ Perspective of Robust Defense for Deep Neural Networks (DNNs)

➢ Empirical Defense

• Improve the model's prediction accuracy in adversarial attacks through robust training.

➢ Certified Defense

• Provide the certified robust radius 𝑅 as the robustness certification of the predicted output.

𝛿
∗

𝑅

𝑥

Empirical Defense vs. Certified Defense

• Robustness Guarantee

✓ For input 𝑥, predictions of classifier 𝐹

on perturbed data within an 𝑙𝑝 norm-

measured radius 𝑅 around x, are 

guaranteed to remain consistent. 

✓ That is, any small perturbation 𝛿 to 𝑥

within this region, including 

adversarial attacks, will not change 

the prediction results.
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⚫ 𝑙𝑝 Norm-bounded Certified Radius of DNN-based Multi-class Classifier on the Input 𝑥

➢ Multiple Norm Types: 𝑙2 norm, 𝑙∞ norm, 𝑙1 norm,  

➢ Exact Robust Radius: 𝑅𝑒

➢ Upper/ Lower Bound of Exact Robust Radius: 𝑅𝑢, 𝑅𝑙

Certified Defense

(a) 𝛿
2
< 𝑅 (b) 𝛿

∞
< 𝑅 (c) 𝛿

1
< 𝑅
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⚫ Motivation

➢ Certified defense efforts for network intrusion detection have been minimal, only BARS

➢ The 𝑙2 robustness guarantee is relatively loose and lacks certification for other 𝑙𝑝 certified radii.

⚫ Problems to be solved:

➢ Pro1: Define a certified radius that can bound heterogeneous network traffic features.

➢ Pro2: Expend the certified robust region to tighten the robustness guarantee.

➢ Pro3: Provide the multiple 𝑙𝑝 norms-bounded robustness guarantees of the model.

⚫ Core Idea:

➢ Extend the real-value certified radius 𝑅 to a vector (𝑅1, … , 𝑅𝑑) ∈ ℝ𝑑, where 𝑅𝑖 denotes the 

dimensional certified radius for the 𝑖-th feature 𝑥𝑖 of the heterogeneous input 𝑥.

➢ Introduce the multiple order information of the smoothed classifier to expand the certified region.

➢ Align the sampling area of smoothing distribution with the 𝑙𝑝-measured surroundings of the input.

Certify Robustness of DNN-based Network Traffic Classifiers

(NDSS’23).
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Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

⚫ Framework of Proposed Multi-Order Adaptive Randomized Smoothing (MARS)

➢ Prediction Procedure

• Sampling 𝑛𝑘 = 𝑛𝑠𝑚𝑎𝑙𝑙 noise data → Predict the category of the input 𝑥.

➢ Certification Procedure

• Sampling 𝑛𝑘 = 𝑛𝑙𝑎𝑟𝑔𝑒 noise data → Calculate the robust radius 𝑅 of the model on the input 𝑥. 
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Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

⚫ Phase 1: Smoothing Distribution Parameters Optimization

➢ Distribution Shape Optimization.

• Encourage noised samples to be near the decision boundary of the classifier for 𝑥.

➢ Distribution Scale Optimization.

• Expand the noise sampling area by adjusting the smoothing distribution's scalar parameter.
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Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

⚫ Phase 2: Multi-order Information-based Certified Robust Radius Calculation

➢ Zero-order Output Probability Information-based Certified Radius Calculation

➢ First-order Gradient Information-based Certified Radius Extension
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Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

⚫ Phase 3: Dimensional Robust Radius Weight Calculation Calculation

➢ Dimensional Feature Sensitivity Analysis

➢ Dimensional Radius Contribution Quantification
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Robustness Certification for DNN-Based Network Traffic Classifiers via MARS

⚫ Smoothing Distribution Diversity

➢ Gaussian Distribution aligns with 𝑙2 norm-bounded certified region

➢ Laplacian Distribution aligns with 𝑙1 norm-bounded certified region

➢ Uniform Distribution aligns with 𝑙∞ norm-bounded certified region
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Experimental Setup

⚫ Dataset

➢ Three datasets created from CIC-IDS-2018 

⚫ Model

➢ CADE

Contrastive Autoencoder 

for Drifting detection and 

Explanation

(USENIX 2021)

➢ ACID

Adaptive Clustering-

based Intrusion Detection

(INFOCOM 2021)
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Experimental Setup

⚫ Attack Configuration

➢ Evasion Attack

• PGD: Projected 

Gradient Descent

• EAD: Elastic-Net 

Attack to DNN

➢ Natural Corruption

• Latency

• Packet Loss
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Experimental Setup

Perturbed Featured under Latency
⚫ Attack Configuration

➢ Evasion Attack

• PGD: Projected 

Gradient Descent

• EAD: Elastic-Net 

Attack to DNN

➢ Natural Corruption

• Latency

• Packet Loss
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Experimental Setup

Perturbed Featured under Packet Loss
⚫ Attack Configuration

➢ Evasion Attack

• PGD: Projected 

Gradient Descent

• EAD: Elastic-Net 

Attack to DNN

➢ Natural Corruption

• Latency

• Packet Loss
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Experimental Setup
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⚫ Comparison of Certified Defense Methods

➢ VRS: Vanilla Randomized Smoothing (ICML 2019) → designed for Image

➢ FRS: First Order-based Randomized Smoothing (NeurIPS 2020) → designed for Image

➢ BARS: Boundary-Adaptive Randomized Smoothing (NDSS 2023) → designed for Traffic
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Experimental Setup

⚫ Evaluation Metrics

➢ Certified Robustness

• Mean Certified Radius

• Certified Accuracy

➢ Empirical Robustness

• Robust Accuracy on Adversarial (Malicious) Examples

• Robust Accuracy on Corrupted (Malicious & Benign) Examples 

➢ Regular Predictive Performance

• Clean Accuracy
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Evaluation Results and Analysis

⚫ Exp 1: Comparison of 𝑙2-bounded Certified Robustness with SOTA Method

➢ Exp Setup: 𝑛𝑠𝑚𝑎𝑙𝑙 =100, 𝑛𝑙𝑎𝑟𝑔𝑒 =10,000. Compare the 𝑙2 overall MCR 𝑅 of the model by category. 

➢ Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.

• For CADE trained on DoSHulk-Drift dataset, MARS shows a 0.23% and 0.03% higher MCR 

in Benign and Infiltration classes, respectively, than SOTA BARS. 

• For CADE trained on Infiltration-Drift dataset, MARS exhibits a 0.22%, 93.66%, and 0.2% 

MCR increase in Benign, SSH-Bruteforce, and DoS-HULK categories compared to BARS.
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Evaluation Results and Analysis

⚫ Exp 1: Comparison of 𝑙2-bounded Certified Robustness with SOTA Method

➢ Exp Setup: 𝑛𝑠𝑚𝑎𝑙𝑙 =100, 𝑛𝑙𝑎𝑟𝑔𝑒 =10,000. Compare the 𝑙2 overall MCR 𝑅 of the model by category. 

➢ Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.

• For ACID trained on Diverse Intrusion dataset, MARS exhibits a 1.75%, 6.44%, 0.04%, and 

7.49% MCR increase in Benign, FTP-Bruteforce, DDoS-HOIC, and Bot categories compared 

to SOTA Certified Defense BARS.
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Evaluation Results and Analysis

⚫ Exp 1: Comparison of 𝑙2-bounded Certified Robustness with SOTA Method

➢ Exp Setup: Compare the Certified Accuracy of the model w.r.t the 𝑙2-bounded certified radius. 

➢ Observation: MARS demonstrated the certified robustness of the model in a larger region.

• For CADE, MARS maintains 100% accuracy until the MCR threshold reaches 0.4, while the 

that of the SOTA methods begins to drop sharply when the threshold just exceeds 0.15.

• For ACID, MARS shows significant advantages over SOTA until the MCR reaches 1.5.
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Evaluation Results and Analysis

⚫ Exp 2: Comparison of Various 𝑙𝑝-bounded Certified Robustness with SOTA Method

➢ Exp Setup: 𝑛𝑠𝑚𝑎𝑙𝑙 =100, 𝑛𝑙𝑎𝑟𝑔𝑒 =10,000. Compare the 𝑙1, 𝑙∞ MCR of the model by category with 

FRS, since neither VRS nor BARS supports 𝑙1-bounded and 𝑙∞-bounded robustness certification.

➢ Observation: MARS consistently provides larger 𝒍𝒑-bounded radius compared to FRS.

• FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network 

traffic features, MARS produces non-trivial 𝑙2, 𝑙1, and 𝑙∞ radii.

• For CADE trained on DoSHulk-Drift dataset, MARS outperforms FRS by 29.25%, 28.95%, 

and 28.72% in 𝑙2, 𝑙1, and 𝑙∞ radii on Benign, respectively.
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Evaluation Results and Analysis

⚫ Exp 2: Comparison of Various 𝑙𝑝-bounded Certified Robustness with SOTA Method

➢ Exp Setup: 𝑛𝑠𝑚𝑎𝑙𝑙 =100, 𝑛𝑙𝑎𝑟𝑔𝑒 =10,000. Compare the 𝑙1, 𝑙∞ MCR of the model by category with 

FRS, since neither VRS nor BARS supports 𝑙1-bounded and 𝑙∞-bounded robustness certification.

➢ Observation: MARS consistently provides larger 𝒍𝒑-bounded radius compared to FRS.

• FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network 

traffic features, MARS produces non-trivial 𝑙2, 𝑙1, and 𝑙∞ radii.

• For ACID trained on Diverse Intrusion dataset, MARS outperforms FRS by 50.78% and 

51.32% in 𝑙2 and 𝑙1 radii on Benign, respectively.
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Evaluation Results and Analysis

⚫ Exp 2: Comparison of Various 𝑙𝑝-bounded Certified Robustness with SOTA Method

➢ Exp Setup: Compare the Certified Accuracy of the model w.r.t the 𝑙𝑝-bounded certified radius. 

➢ Observation: 𝒍𝟐 radius is usually smaller than the 𝒍𝟏 radius and larger than the 𝒍∞ radius.

• At the same radius, the area bounded by 𝑙1 norm should be the smallest, and the area 

defined by 𝑙∞ should be the largest.

• Different norm-bounded radii calculated experimentally are consistent with theoretical results.
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Evaluation Results and Analysis

⚫ Exp 3: Comparison of Empirical Robustness against Evasion Attacks with SOTA Method

➢ Exp Setup: Attack ACID with PGD and EAD adversarial Bot. Iteration is 20. For 𝑙2-PGD and 𝑙1-

EAD, perturbation limit 𝜖 is 1.0, with per-step budget ϵ𝑠 of 0.75. For 𝑙∞-PGD, 𝜖 is 0.2 and ϵ𝑠 is 0.1.

➢ Observation: MARS surpasses SOTA defense in robustness against evasion attacks.

• MARS improves robust accuracy over the Vanilla detector (base model without defense) by 

13.79% for 𝑙2-PGD, 33.94% for 𝑙∞-PGD, and 10.01% for 𝑙1-EAD. 

• MARS also outperforms SOTA BARS, boosting robust accuracy by 1.7% for 𝑙2-PGD, 7.17% 

for 𝑙∞-PGD, and 10.11% for 𝑙1-EAD.

• MARS well retain the clean accuracy of the ACID on clean Bot samples, reaching 100%.
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Evaluation Results and Analysis

⚫ Exp 4: Comparison of Empirical Robustness against Natural Corruptions with SOTA Method

➢ Exp Setup: Generate natural corrupted samples from clean benign/malicious samples using 

Latency and PacketLoss. Use random noise following a Gaussian distribution with mean 0. 

Adjust the standard deviation 𝜎 in {0.5, 1.0, 1.5} to mimic the different corruption strengths.

➢ Observation: MARS surpasses SOTA in robustness against various corruption intensities.

• MARS outperforms SOTA BARS in robust accuracy, exceeding it by 8.53% on corrupted 

Benign and 7.5% on corrupted Bot.
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Evaluation Results and Analysis

⚫ Exp 5: 𝑙𝑝 Certified Robustness with Different Smoothing Distributions

➢ Exp Setup: 

• All baselines use Gaussian as 

the smoothing distribution. 

• MARS considers distribution 

diversity and sequentially uses 

Gaussian, Laplacian, and 

Uniform distributions.

➢ Observation:

• Different distributions each excel 

in different classes.

• Using a single distribution may 

miss a tighter certified radius.
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Evaluation Results and Analysis

⚫ Exp 6: Dimension-Wise Certified Robustness

➢ Exp Setup: MARS’s Top-5 and bottom-5 

dimension-wise radius of the ACID.

➢ Observation:

• The model demonstrates greater 

sensitivity to inter arrival time (IAT)-

related features while showing 

greater robustness to forward packet 

length-related features.

• This finding is consistent with the 

previous observation that the vanilla 

ACID model exhibited significantly 

reduced robust accuracy on 

corrupted samples using Latency.
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Summary

⚫ Contribution

➢ Robustness Certification Framework

• Proposed MARS, a novel certification framework to calculate the robust radius of DNN-based 

network intrusion detectors that requires no modification to model structure.  

➢ Multi-Order Information Utilization

• Introduced a method to expand certified regions by leveraging multi-order information of the 

classifier beyond zero-order techniques.  

➢ Dimensional-Wise Robust Radius

• Designed a dimensional robust radius calculation approach for inputs with heterogeneous 

features, like network traffic.  

➢ New Threat Model

• Extended empirical robustness evaluation of traffic classifier to account for natural corruption 

(e.g., Latency and Packet Loss) in addition to evasion attacks using adversarial examples.  



Basic Scheme

Background Problem Solution Evaluation Conclusion 32

Future Work

⚫ Target issues

➢ Non-𝑙𝑝 Robustness Certification against Structural Perturbations

• Different from the 𝑙𝑝-norm bounded changes of input features, for structural perturbations that 

change the overall structure or composition of the input (such as adding, deleting, or 

reordering nodes/edges in a graph), special non-𝑙𝑝 robustness certification is needed to 

evaluate and guide the model’s robustness improvement.

➢ Robustness Certification for Multi-modal Models

• Current certified defense techniques often face challenges in evaluating robustness across 

multiple data modalities. Designing a framework that can certify robustness by considering 

the interactions between heterogeneous and homogeneous data inputs simultaneously will 

be interesting.
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