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Table 3.4 Comparison of defense methods attributes

Method Faced Attack Surfaces Knowledge of Attacker Augmentation Space
PGD-AT!?] Off-manifold Known Input Space
PGD-DMATP®! Off-manifold & On-manifold Known Input & Latent Space
InputMixup ] Off-manifold Unknown Input Space
CutMix 4% Off-manifold Unknown Input Space
PuzzleMixup#! Off-manifold Unknown Input Space
ManifoldMixup®!  Off-manifold Unknown Latent Space
PatchUp 46} Off-manifold Unknown Latent Space

LarepMixup(Ours) Off-manifold & On-manifold Unknown Latent Space
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Fable 2: Accuracy (%) of CIFAR-10 classification models on ofl/on-manifold adversarial examples
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% PGD-AT % PGD-AT ° % PGD-AT 30 % PGD-AT 38 ® PGD-AT
m  PGD-DMAT m PGD-DMAT m  PGD-DMAT o = PGD-DMAT ° 75 m PGD-DMAT
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CIFAR-10 SVHN

Accuracy of AlexNet on CIFAR-10 Accuracy of AlexNet on SVHN
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Latent Representation Mixup

BE—

XIDIAN UNIVERSITY

BF EE=AFRIEESHREHEMESHEEZILHEE
ST - MERILLSELE

> RNEREEIRISHEE.
o —JT/=JT+ %Mt/ EEREE

o =f4EIimageNetZUEE

Table 4: Robust accuracy (%) of PreActResNet18 under differ-
ent mixing modes (ImageNet-Mixed10)

v
E——

Method

Vanilla

Dual-LarepMixup

Ternary-LarepMixup

s A {

Convex Mask Convex Mask
Clean 90.47 90.57+0.55 90.89+0.35 90.67+0.21 90.24+1.25
FGSM 13.93 17.09+0.29 16.21+0.14 16.71+0.34 17.29+0.94
PGD 2.00 5.38+0.81 4.68%0.45 4.7310.69 5.81+1.32
AutoAttack 0.00 3.74+0.19 3.68+0.29 3.60+0.18 3.66+0.04
DEEpFDG] 8.87 85.38+0.19 83.98+0.42 84.89+0.18 83.93+1.00
CW 0.10 84.61+0.30 83.16%0.52 84.19+0.47 83.28+0.62
OM-FGSM 26.90 59.91+1.30 28.61+5.58 57.36%+1.89 28.21+£0.98
OM-PGD 20.43 58.76%1.30 27.99+5.92 56.59+1.87 27.47+£1.44
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A\ ACM ASIACCS 2023
O TERE ¥

Melbourne, Australia

FEMRAREEBFAAMR 8K W, CCFHEFMNESEELZE CEX RN

ACM Asia Conference on Computer and Communications Security (AsiaCCS)

> Mengdie Huang, Yi Xie, Xiaofeng Chen, Jin Li, Changyu Dong, Zheli Liu, Willy Susilo.
Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent

Representation Mixup [C]. ACM Asia Conference on Computer and Communications
Security (AsiaCCS), 2023, 1(1):716-730. (2Z£TEhE)
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Multi-Order Adaptive TJ—;:

TEEFHAS Randomized Smoothing

BFZh BiEMFEFEREERESEEINIER S
REHRERE SRR A

2Z208BH1E (Empirical Defense) > BIIGUEBHTE (Certified Defense)
B EAVIEGRA SN o BT AIIGUFHRIRHEEITITES
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Multi-Order Adaptive Hﬁz

g TREF 1A% Randomized Smoothing

O

A\

BFZh BiEMFEFEREERESEEINIER S
REHRERE SRR A

WEBFE (x, F,R) > BIIGUEBHTE (Certified Defense)
EIEaR==y ==/ =g o BT AIIGIFF R EFEMIE
IEFRNS

X FEEBIAX, {RIUEDNNDEES F
XJ x FEELAL, SEEBUEERIFR I R
TuiENEUE REVTUU 2 —EEY, Bz
i PRI NBIRUIMED (40
XHIE) #BFCA S RELTNIZEER,
o] ISIERLAEMUES :
IR REE TR TEF
B IEN S A ETEE.
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r //cz

Multi-Order Adaptive H:%:

Randomized Smoothing

SHEREEEIEIIERSR

(a) Iz radius: ||6]|2 < R

(b) lso radius: ||6]|co < R

(c) 1 radius: ||6]||1 < R
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Multi-Order Adaptive Hﬁz

DEEFNAAS Randomized Smoothing

XIDIAN UNIVERSITY

BT S BiEMFE T ERREHEMNESEEISIER
O Multi-Order Adaptive Randomized Smoothing (MARS) {E2%28

L
n——7g' 8 O O
B A— @ OO
m lL. &3 6 85
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- m P © 0 0 00O
=, 228 $¥esy 8
|
. @ ‘/-—.;!772 % T O O Runner Up
X Me~D (k=1,..,n) x+mn F(x+mn), (k=1,..,n)
Input Sample Smoothing Distribution Noised Samples Base Classifier Predicted Label Counted Class
> FuidiE > IUETE
> BiR: o3esTullimAN x B35 o Bir: IR, AIiIFEEREFER
o IEHEFENMD o KFEnarge (10,000 MERED IR x
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Multi-Order Adaptive Hﬁz

Randomized Smoothing

BFZh BiEMFEFEREERESEEINIER S
O BiE—: FBSHmSHil

> RN
> DTRARL

> ZHEBBHEEEAR o BN TEED N(u, o) RY PDF
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Multi-Order Adaptive

T3 arEFHmIS Randomized Smoothing
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S

BT = BERNEH T ERREWEMES ISR S

O ME=: EFHERNAEXILY B
> ﬁﬁ?ﬂﬁﬂ’fﬂiz |:|n_nﬂ:| Bﬁ*%r_ 1E|IU/\|__|]«-|_%-1’A1‘IEE|£'{I

_____
——————
e ~
P ~
-

Low Decision Boundary

! \
QL \\
\
I Tangent®,
< A ) A
© Direction’
c \
() Xp |
Q ]
= ,'
m i
= /
~ s
S v
& 4
A — //
< 7
+ 7
Q \\\ ’/’
C EE = RS | S =T
5
Fx

High B8 Champion Class ¢4 = ¢; Champion Class ¢4 = ¢,

Low

Co

Fsmootn(xp) value on ¢4

High

47



v 2
2=
b~
Q o
© O
o E
AS
| -
VT
B8
Q'E
£8
=
c
= ©
o’

BT = BERNEH T ERREWEMES ISR S

S TREFH#HAYL

EAE

RS

>

48

ACID (DoS-GoldenEye)

0

o o
=) o

© <

12.00
10.00
8.0
2.00
0.00
&

o~

HDIA [euoisuawiq painseaw-<7



Multi-Order Adaptive

TREFHR#AE

BT = BERNEH T ERREWEMES ISR S

O BERN: EERhSiFE
> SRS R KX AR, BEXE
> BEHRIF10,000MEFEFEAR

Randomized Smoothing

BETONITT LREXE, SIS L REXE IS0 MRITE Lo RFXIE

6 10.0 2.0

p=(0,0),0%=(1,1) s u=(0,0),b=(1,1) a=(-1,-1),b=(1,1)

75 y 1.5
5.0 1.0
2:5 0.5

0.0

X2
o
X2

=2i5

=5.0 -1.0

-75 * -15
-6 -10.0 -2.0

) -4 -2 0 2 4 6 =100 =75 =50 =25 0.0 2:5 5.0 7.5 10.0 =20 =15 =10 =05 0.0 0.5 1.0 1.5 2.0
X1 X1

(a) Gaussian distribution N'(y, o) (b) Laplacian distribution L(y,b)  (c) Uniform distribution U (a, b) 29



©)

©)

TREFHR#AE

XIDIAN UNIVERSITY

Multi-Order Adaptive

Randomized Smoothing

BFE—

BFZh BiEMFEFEREERESEEINIER S
O SEISiTE — SEaeE

> INE

PyTorch 2.0.1, SciPyV 1.11.2, CUDA V
11.7
NVIDIA GeForce 3090 GPU

> RS

©)

CSE-CIC-IDS-2018
DosHolk-Drift Dataset
Inflation-Drift Dataset
Diverse Intrusion Dataset

Similar Intrusion Dataset

> T&E

o CADE

o ACID

> WA

o XHIT: 1,-PGD, l;-PGD, l,,-PGD,
EAD

o BZAIRIA: Latency, Packet Loss

> AISGUERAEIXSEL A

o BENNE (VRS)

o —MFEHEE (FRS)

o JAFRBENEHFE (BARS)
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Multi-Order Adaptive
Randomized Smoothing

BF Sk BiEM BT

y TREFHBAS

HIREMEREESFIEINIER S
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ST — 3£
> BPAIRIA(Natural Corruption) N2 ZF-HLAYFE

O

Features Perturbed under Different Natural Corruptions
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o) TEEFAMAS Randomized Smoothing

BFZh BiEMFEFEREERESEEINIER S
O sCI6iF(d - SeIRE
> LSRR

o BJISUFEREM (Certified Robustness) -
o HIAIFHAR Mean Certified Radius (MCR) = ﬁ; R;
* .I’ -]’ \‘E =2 NFsmoot X)=Yrrue) &(RZRgiven
AL/ Certified Accuracy (CerAcc) = ( kel 3\[ i o
o RIGEESME (Empirical Robustness)
L gpEy 4 " it
« X CBR) FANSEHEERR Recall = —0
« RN CEEFRMY) FANSEEERR
N th (X*)=Ytrue TP+TN
Robust Accuracy (RobAcc) = L il e -
N TP+TN +FP+FN

o EINFNTEBE Regular Predictive Performance

I hi<: N th \X)=Ytrue
* :FI%IEE%Z%——‘ Clean Accuracy (CleAcc) = (FsmOO’;\(r )=Ytrue)
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Randomized Smoothing

BFZh BiEMFEFEREERESEEINIER S
O SEISiTE — SEaeE

> AT HBIMZENEFE (Network Intrusion Detection,NID) ZiEE(EE

=

CSE-CIC-IDS-2018-CADE CSE-CIC-IDS-2018-ACID
Dataset | DoS-Hulk-Drift Dataset | Infiltration-Drift Dataset | Diverse-Intrusions Dataset| Similar-Intrusions Dataset
Class Number Class Number Class Number Class Number

Benign 52996 Benign 52996 Benign 52996 Benign 52996
~ |SSH-Bruteforce 9385 |SSH-Bruteforce 9385 |FTP-Bruteforce 12590 DoS-GoldenEye 26565
e Infiltration 7390 DoS-Hulk 34789 | DDoS-HOIC 53476 |DoS-SlowHTTPTest 11191
- - - - Bot 22584 | DDoS-LOIC-HTTP 46095
Benign 13249 Benign 13249 Benign 13249 Benign 13249

e SSH-Bruteforce 2346 |SSH-Bruteforce 2346 |FTP-Bruteforce 3148 DoS-GoldenEye 6641

Infiltration 1894 DoS-Hulk 8697 DDoS-HOIC 13369 | DoS-SlowHTTPTest 2798
DoS-Hulk 43486 Infiltration 9327 Bot 5646 DDoS-LOIC-HTTP 11524
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) G4 £7 S Randomized Smoothing

BT Z 0 BiERN e B EHE S ES IR 3
O SEISTFd - sEIheE
> AISIERG AR

=

o FHMESTHF o EEIEBSHE
o FSHREISZIF o IS

Table 4.4 Comparison of certified defense methods

Robustness Guarantee Diversity Adversarial Attacks Natural Corruptions
Method |Heterogeneity |Universality

> Radius [; Radius [~ Radius |l> Attack I; Attack [, Attack|Latency Loss
VRS O ° ° 0 O 0 O O O O
FRS!"! o) ° ° ° ° ®) 0 0 O o)
BARS ! ° ® ° O o) O O ° O O
MARS [ ® [ ] ® ® ® e e e ®

54



L; MCR

Lz MCR

1.900

1800

1.700

1.600

1.500

1.400

1.300

1 200

Multi-Order Adaptive

TEEFHAS Randomized Smoothing

XIDIAN UNIVERSITY

BT = BERNEH T ERREWEMES ISR S

O SEIGTE - tamXIELsElS
> LEEHRIE: HSAEFR (MCR) LU

CADE-DoS-Hulk-Drift (Benign) CADE-DoS-Hulk-Drift (Infiltration) CADE-Infiltration-Drift (Benign) CADE-Infiltration-Drift (SSH-Bruteforce)

3.168 2,055
3.167 2,054 0.400
3.166 2,053

o 0.300
3.165 2,052 5

=
3.164 2051 s

~' p.z00
1.163 2,050
3162 2049 0.100
3161 2,048
3160 2,047 0.000

42 43 44

3.169 2,056 0,500

L, MCR
L: MCR

42 43 a4 42 a3 a4 42 43 a4
Random Seed Random Seed Random Seed Random Seed
ACID (Benign) ACID (FTP-Bruteforce) ACID (DDoS-HOIC) ACID (Bot)
1.700 2482 2.650
1675 2.481
2.600
1650 2.480
1.625
o o 2550
2 x 2470 g
= 1.600 = =
e 2478 3
~ 1575 - 2500
1550 2477
2.450
1.525 2476
. . 1.500 2.475 2.400
43 a4 42 43 44 42 a3 a4 42 43 a4
Random Seed Random Seed Random Seed Random Seed

== VRS == FRS ==1 BARS == MARS

Figure 4.6 Comparison of [, Mean Certified Radius (MCR). 55



Certified Accuracy

Multi-Order Adaptive T:-

Y G% £7 S Randomized Smoothing

BT = BERNEH T ERREWEMES ISR S
O SEIEE(H - tERXIELSERS
> LEEMHRIE: TIRIEERERIE

CADE SSH-Bruteforce ACID FTP-Bruteforce
1.0 —— BARS 1.0 —— BARS
—— MARS - — MARS
0.8 O 0.8
&
=
0.6 © 0.6
<
©
0.4 L 04
=
put
0.2 K K 3 0.2
0.0 0.0
0.0 0.5 1.0 00 05 1.0 15 20 25 3.0
Robustness Radius Robustness Radius
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Table 4.7 Comparison of empirical robustness of ACID against different adversarial attacks

Metric Clean Accuracy Robust Accuracy/Recall on Adversarial Examples
Method Seed Clean l,-PGD loo-PGD  [;-PGD [,-EAD
42 1.0000 0.8395 0.5501 1.0000 0.0032
43 1.0000 0.8395 0.5502 1.0000 0.0016
Vanilla
1.0000 0.8395 0.5502 1.0000 0.0032
meanzstd| 1.0000+£0.0000 0.8395+0.0000 0.5502+0.0001 1.0000£0.0000 _0.0027+0.0009
42 1.0000 0.9601 0.8154 1.0000 0.0016
1.0000 0.9601 0.8190 1.0000 0.0017
BARS !
1.0000 0.9610 0.8190 1.0000 0.0016
meanzstd| 1.0000+0.0000 _0.9604+0.0005 0.8178+0.0020 1.0000£0.0000 0.0016+0.0001
42 1.0000 0.9779 0.8925 1.0000 0.1031
43 1.0000 0.9784 0.8863 1.0000 0.1021
MARS
1.0000 0.9759 0.8898 1.0000 0.1031
meanstd| 1.0000+0.0000 0.9774+0.0013 0.8895+0.0031 1.0000+0.0000 0.1028+0.0006
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Table 4.12 Sensitive and robust features on DoS-GoldenEye

No Radius FeatureName Description
24 0.0426 Flow_IAT_Std Standard deviation time two flows.
Standard deviation size of packet
20 0.0433 Bwd_Packet_Length_Std ANCALD Ceviation s7e of packe
in backward direction.
) Standard deviation time a flow was
79 0.0488 Active_Std
active before becoming idle.
) ) Number of bytes sent in initial
72 0.0569 Init_Win_bytes_forward
window in the forward direction.
Maximum time a flow was active
78 0.0576 Active_Max
before becoming idle.
8 10.0741 Flow_Duration Flow duration.
Number of times URG flag was
39 10.9644 Fwd_URG_Flag set in packets travelling in the
forward direction (0 for UDP).
52 11.2367 RST_Flag_Count Number of packets with RST.
Number of times PSH flag was
38 11.3300 Bwd_PSH_Flag set in packets travelling in the
backward direction (0 for UDP).
. Minimum size of packet
13 11.4358 Fwd_Packet_Length_Min
in forward direction.
All 2.2305 MCR Mean certified radius per class.
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Table 4.9 Comparison of [; MCR and Average Certification Time (ACT) (per sample/sec) in fine-grained

detection of similar intrusions.

Method Benign DoS-GoldenEye  DoS-SlowHTTPTest  DDoS-LOIC-HTTP
VRS7I 0.1950 (0.0028)  0.0001 (0.0039) 0.0000 (0.0053) 0.0000 (0.0033)
FRS V7 1.2077 (0.0238)  0.0024 (0.0309) 0.0014 (0.0459) 0.0000 (0.0269)
BARS!® | 1.9036 (0.0029)  2.1928 (0.0040) 2.2280 (0.0051) 2.2034 (0.0033)
MARS 1.9260 (0.0253)  2.2305 (0.0331) 2.2289 (0.0361) 2.2070 (0.0279)

Table 4.10 Comparison of [, MCR and Average Certification Time (ACT) (per sample/sec) in fine-

grained detection of similar intrusions under the same smoothing distribution.

Norm | Method | Benign DoS-GoldenEye DoS-SlowHTTPTest DDoS-LOIC-HTTP
L FRS71 | 1.2077 (0.0238)  0.0024 (0.0309) 0.0014 (0.0459) 0.0000 (0.0269)
MARS | 1.9260 (0.0253) 2.2305 (0.0331) 2.2289 (0.0361) 2.2070 (0.0279)
L FRS7! | 1.2077 (0.0236)  0.0000 (0.0311) 0.0000 (0.0365) 0.0000 (0.0272)
MARS | 1.9317 (0.0256) 2.2373 (0.0334) 2.2289 (0.0378) 2.2037 (0.0283)
l FRS7! | 0.0000 (0.0240) 0.0000 (0.0321) 0.0000 (0.0377) 0.0000 (0.0279)
- MARS | 0.2196 (0.0263) 0.2482 (0.0336) 0.2475 (0.0383) 0.2460 (0.0293)
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> IS
o PyTorch 2.2.0, CUDAYV 12.1, NVIDIA GeForce RTX 3090 GPU
> fRE

Table 5.1 Model architecture and parameter information

Role Architecture Block Type Total Params Forward Size Params Size Total Size

Source Model WideResNet-34-10 Residual 46,159,545 7.38M 176.08M  183.47TM

Target Model ResNet-18 Residual 11,172,297 1.29M 42.62M 4391M
Target Model MobileNet Separable 3,215,625 1.6OM 12.27M 13.95M
> RS

o JRIEZHESS (2): UNSW-NB15 (NoExploit), NSL-KDD (All).
o BtREEESE (2): UNSW-NB15 (WithExploit), UNSW-NB15 (All).
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Table 5.2 Dataset information
Percentage of Num of Limited Num of Limited Num of Limited
Role Name ClassNum
Target Train  Train-Benign Train-Malicious Train
Target UNSW-NBI15 5 5% 2595 978 3573
Dataset (WithExploit) 10%~50% 5189~.25945 1956~9776 7145~.35721
Target UNSW-NBI15 10 5% 2595 2704 5299
Dataset (AlD) 10%~50% 5189~.25945 5408~27040  10597~52985
Source  UNSW-NB15 9 5% 2595 1727 4322
Dataset (NoExploit) 10%~50%  5190~-25950 3454~17270 8644~43220
Source NSL-KDD
5% 3368 2931 6299

Dataset (AlD
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FRERS BT BfMERNT#EEE. e EEIEREEN,
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> WihcE
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Table 5.3 Comparison of standard/robustness-preserving Transfer Learning (TL) methods

Evaluate Evaluate

Transfer  Robustness Designed

Differences between Source and Target Tasks

Binary Multi-Class Same Model Difterent Models Different Models

Classification Classification Different Domains Same Domain Different Domains

Method  Transferring for NID

FT|146]
KD|149]
FRFE 3!
TWINS 84
VAD ¥l
AAD ™
CARD

® 6 6 6 6 O O
® O OO OC e e
® O OO OC e e
® 6 06 06 6 O O

® OO & e O e
® 6 ®§ OO @ O
® 0 O 0 00
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o BFRENIDEUREE SIRIENIDEUBRERIMINEHETEIAR, BIENEHEE A
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Figure 5.5 Adversarial comparison with SOTA fine-tuning methods on cross-data domain TL.

Figure 5.4 Comparison with SOTA fine-tuning methods on cross-domain TL.



N = AAAAAARRReY = | reeeeeseaeee
: sl Tl |1, e 2
N > gk v £% [
T T T =]
E|<< NN NSNS NNN =T BSOSO NN NN NNN]
A VAvavaveays 2 Ty \ [ 7 R
=4 T T TT T T RN (T T T T T
~ 2 —— & —
(0'0) I NSNS NS N g (PPN~ S S S SSSSSN
Wog =z Savava 2 Z &2 7 7 e
— D) >kt T T T T T s T T TS
: I\ Z 33 O Q33 [ - ¢
-+ = NS S AN X LSS AN
Q =< 2 8l wawd o 2 K|l [ i
[ LD T T T T T T 1 T A T T T T T I T 1T
= . DRI —
(7]
g Jqm 2 S SO SOE
(%2 =1 -va C A
He Q & IEEEEEEEEEEEEE ISR EEEE
__ : s [ T T ORArRSrre
ﬁx o [s2] w A o~ o o [+2] w < o (=]
* ~— 4 & © o© o o ~ & © o <& o
+H =
= 1X £ = s = SRNRReaWeY A
— M H e i g T aveveve -
N 42z (T TT T T g (T T T T T T J
© \NJ - M £k A
." R W_ _ 5L« SLLRRRRSweY _ gt NSO NN\ N
E ~ T 2 N WAVayaveys 2 Sy \ [/ 7 7 /]
(v ._._.m._. = 4\ (T T T 1T o[ 7N [T T T T T 1T}
n = L p= [+ - -
’ +< 3 el
2 RSN SSN s NSNS NSNS
r ﬁ _A %_E S g raveaws 2 = £2 Vavevevs O
Q 4ok EEEEEEEEEEE S L% T T T T T 1TSS
S wﬂ ._._VA ‘__w 2 23 - <33 b
"~ = I s SN SNN a) SN
g o) BH = K| avavs o > K| VAV O
A zJ = 2 2 LT T T T T 1 T T INEEEEEEEEE <
< Z . [
’ =2
N #_R_n z maw £ ey £
(o)) N z v C vawawd -~
S A =1 LT T T T T T T T i [T T T T AT 1T 1
(S O o
© mm ﬂz T
id * ° ® @© % 9~ 9 °© e v ¥ o 2
S O - o o (=} (=) (=} —~ o (=] (=} [=) (=]
© _w* 4]
o tormy __ ] AN NNMSRRREY ANV RMRRRRRRNY
wd [ 7 7 7 7 VA A A AR AR AR A
c M = [T T T, T T T T T, T T s [T T T T T T T I T T
2 Dy vy
1)
O e £ DO N — OSSNSO NN
mm o AV Aveveavevs O T P77
@) ._N = (T TT T T T T T T s (TITTTITTITT
L= S|lg 4| S o ||
T_I_ 2 3% I AAAAAARRMRLN 2% % | e
o ~ 4 00 evaevesvasvisva S % 00 Sveissasasrs S
TN AH— 2y \ EEEEEmsmEEE S ), \ T T T I T T T I T T T TS
3 > _ / | = 0N [ - | ————
=N} n [a) A
= 1 \ o NS SSSSSS ¥ NSNS SSNSSSSSN
A= b al AVAVAVAVi © | AAeSvevevewd o
.___.u 7 ‘ Iy T T T g EEEEEEEE <
[ O
=31 <
D D233 OSSN 28 SLeweweweY <
) He 1\ S |~ A A A °
*n ! + Rl EEEmEEE S Kl (T T T T T
=RE 2 , P © @
j y j o © © < ~ o =} © © < ~ =]
—V\0 .ﬁ .nm_” Mu___vm - & S © s o - S S S & &
=) +< :& AL ARARRRRNY AAAAMLRRRRWY
.\ Ho i 7 77
+ ! AD @ [T, TT T T T T T T [T T T T T T I T T
7 N £ o~ o P T _ [P a——r————
PR I = {Ik = DSOS SN a E S S
H N IOV AVaVeVeyd 2 —© IAv.evevs °
+n = T T T T e ((TTTT TR
L [F -~
~— 1K 2 4y 5 &z
~ . £ 3% LA NN NN = Jo9 B SN NN NN
- Hin g oo Evawvavaeva 2 =00 A aea O
i . IEEEEEEEE < = (TTTTT T T
. o o h\ <N
BSOSO [~
p= [\ o) \
B 2 5 RSN NSNS =) PSS NS SN
= < e [~ 70—
oy IR 5 Yy ([T T T T A
ﬁﬂ—A —+— z 22 SO D <2 EC—
L z 23 NSNS NN 28 NSNS NSNS
z VAvaweawd ° [
S INEEEEEE S Kl N
| A e © ermer
(=] 2] (e} =T o~ o o co [te] = ™~ o
4~ © o©o o© o o <~ © o© o o o

82

(a) TL across models with similar building blocks.

(a) TL across models with similar building blocks.
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(b) TL across models with different building blocks.

(b) TL across models with different building blocks.
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Figure 5.10 Impact of target-domain training data amount on cross-domain TL.

AE=

EHEMESRETIERE

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

> BtmiE)|

5%~50%

R ERSIIT

o FHERAGHIERZFIESS

CleAcc (Multiclass)

—— g, o————‘———%
B _—-4.‘.——+—'—_+—'__-* 5
¥ " -
® /
--/.____-—-

—e— StdTrain  —=— VAD  —+— CARD
—x— KD —+— AAD
5%  10% 20% 30% 40% 50%

CleF1 (Multiclass)

—e— StdTrain
—x— KD

—=— VAD
—+— AAD

—+— CARD

5% 10% 20% 30% 40% 50%

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

AdvAcc (Multiclass)

o J— " .
0/
+ p———t— e
/./
-
.—__._.______.___——"'
"/x—-__*__""“—-—-x
57___4-——__. — "
—e— StdTrain —=— VAD —+— CARD
—x— KD —+— AAD
5% 10% 20% 30% 40% 50%
CorAcc (Multiclass)
—— ————
/+
X i'—-?-:t"__‘:
i —4—1' = —=
x
L ]
.———._.——-". o=
-—
—e— StdTrain —s— VAD —+— CARD
—x— KD —+— AAD
5% 10% 20% 30% 40% 50%
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Figure 5.12 Impact of target-domain training data amount on cross-domain-and-model TL.
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Figure 5.16 Robustness against Adaptive Attacks in Cross-Domain TL
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Figure 5.17 Robustness against Adaptive Attacks in Cross-Model TL
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Table 1: Comparison of Time Cost on Cross-Domain TL Tasks

Source Dataset Target Dataset TLMethod CleAcc AdvAcc CorAcc Time (sec/epoch)

StdTrain 0.75 0.31 0.48 0.95

9-class 2-class FT 0.82 0.40 0.79 0.89
UNSW-NB15 UNSW-NB15 TWINS 0.81 0.76 0.80 32.44
(NoExploit) (WithExploit) FRFE 0.81 0.80 0.80 0.93
CARD 0.86 0.82 0.84 16.99

StdTrain 0.30 0.18 0.35 1.30

5-class 10-class FT 0.57 0.30 0.51 1.33
NSL-KDD UNSW-NB15 TWINS 0.60 0.58 0.59 47.59
(AlD (AlD) FRFE 0.62 0.43 0.60 1.36
CARD 0.75 0.61 0.72 24.17

Table 3: Comparison of Time Cost on Cross-Domain&Model TL Tasks.

Source Dataset Target Dataset | Target Model | TL Method CleAcc AdvAcc CorAcc (Sechlemngh)
UNSW- UNSW- ResNet-18 S%%n I i
NB15 NB15 StdTrain 075 040  0.45 0.29
(NoExploit)  (WithExploit) | MobileNet CARD 0.84 081 0.82 2.86
NSL- UNSW- | ResNet-18 Sa%%n Do e o R
KDD NB15 ) StdTrain 036  0.16  0.27 0.36
(All) (Al MobileNet | “CARp  0.61 0.60 0.54 4.12
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Table 2: Comparison of Time Cost on Cross-Model TL Tasks

Dataset Target Model | TLMethod CleAcc AdvAcc CorAcc Time (sec/epoch)
StdTrain 0.47 0.24 0.47 0.34
KD 0.61 0.34 0.52 0.72
ResNet-18 VAD 0.53 0.50 0.53 2.82
9-class AAD 0.70 0.69 0.68 14.10
UNSW-NB15 CARD 0.71 0.71 0.70 4.39
(NoExploit) StdTrain 0.42 0.18 0.23 0.33
KD 0.64 0.19 0.35 0.71
MobileNet VAD 0.45 0.40 0.41 2.74
AAD 0.63 0.57 0.40 14.27
CARD 0.69 0.64 0.67 3.53
StdTrain 0.48 0.25 0.31 0.37
KD 0.57 0.25 0.33 0.81
ResNet-18 VAD 0.50 0.44 0.48 3.47
5-class AAD 0.53 0.43 0.45 16.98
NSL-KDD CARD 0.72 0.63 0.64 5.22
(All) StdTrain 0.48 0.28 0.31 0.38
KD 0.55 0.24 0.23 0.81
MobileNet VAD 0.45 0.41 0.40 3.53
AAD 0.48 0.42 0.42 17.37
CARD 0.56 0.49 0.40 4.47
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