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人工智能系统工作流程

训练集

测试集
模型数据预处理

输入环节 准备环节 机器学习环节 输出环节

深度学习环节 DNN

模型训练 模型测试

人工智能系统=数据+模型

绪    论
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—发展负责任的人工智能

第五项 安全可控原则

◼ 人工智能系统需求

◼ 人工智能技术突破

✓ 提高人工智能鲁棒性及抗干扰性

✓ 形成人工智能安全评估管控能力

透明性

可解释性

可靠性

可控性

属  

性

可审核

可监督

可追溯

可信赖

功  

能

《新一代人工智能治理原则》

模型可靠性威胁

➢ 训练阶段 数据集污染

➢ 推断阶段 对抗样本干扰

人工智能安全风险

投毒攻击 逃逸攻击

 计算机视觉系统

✓ 路标识别系统 →自动驾驶事故

✓ 人脸识别系统 →人员非法进入

 语音识别系统 

 自然语言处理系统

对抗攻击实际危害

研究面向深度神经网络的对抗鲁棒性关键技术具有重要的理论价值和实际意义

绪    论
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—发展负责任的人工智能

第五项 安全可控原则

◼ 人工智能系统需求

◼ 人工智能技术突破

✓ 提高人工智能鲁棒性及抗干扰性

✓ 形成人工智能安全评估管控能力

透明性

可解释性

可靠性

可控性

属  

性

可审核

可监督

可追溯

可信赖

功  

能

《新一代人工智能治理原则》

研究面向深度神经网络的对抗鲁棒性关键技术具有重要的理论价值和实际意义

核心威胁对抗样本

绪    论



绪    论
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预处理 DNN 反馈

自动驾驶仪动作：停止 自动驾驶仪动作：限速

 对抗攻击 (Adversarial Attack)

➢ 攻击对象：深度学习模型的推理阶段

➢ 攻击目标：使深度学习模型对输入的对抗样本做出错误预测。

➢ 现实威胁：图像分类模型、网络流量分类模型等。



 对抗攻击 (Adversarial Attack)

➢ 攻击对象：深度学习模型的推理阶段

➢ 攻击目标：使深度学习模型对输入的对抗样本做出错误预测。

➢ 核心思路：通过添加精心制作且难以察觉的扰动改变输入，使分类错误。

绪    论
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干净样本 (即原始输入样本) 

干净样本 对抗扰动 对抗样本

+ =

预测标签：停止

置信度得分：97.99%

预测标签：限速

置信度得分：99.53%

已部署的训练好的DNN模型

已部署的训练好的DNN模型
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对抗攻击类别：白盒 / 黑盒

输出函数 𝑓1数据集

对抗
样本集

扰动集
(𝛿)

白盒攻击

梯度下降
∇𝐿𝑥

𝑥1

数据集

梯度下降
∇𝐿𝑥

输出函数 𝑓2

对抗
样本集

扰动集
(𝛿)

𝑥2

𝑥3

𝑥4逐一输入

黑盒攻击

(𝑥, 𝑦)
(𝑥∗, 𝑦′)
(𝑥∗, 𝑦′)

正常样本
对抗样本A
对抗样本B

绪    论

受害者模型

替代模型
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训练集

分类器
函数集(𝜃)

输出函数 𝑓0

函数𝑓的
表现评估

Batch 1

Batch 2

Batch 3

Batch 4
批处理

输出函数 𝑓5

输出函数 𝑓6

输出函数 𝑓7

损失计算

梯度下降
∇𝐿𝑤

第1轮迭代

输出函数 𝑓8

初始化

第2轮迭代

第3轮迭代

第4轮迭代

(𝑥, 𝑦)

(𝑥∗, 𝑦)

正常样本

修正标签的对抗样本

对抗训练提升对抗鲁棒性

better than 𝑓1 修正了决策边界

缺点1: 过拟合对抗扰动特征

缺点2: 降低干净样本的准确率

主动式防御：对抗训练改善鲁棒性

绪    论
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面向深度神经网络的对抗鲁棒性关键技术研究关键挑战

模型鲁棒性泛化技术 模型鲁棒性验证技术 模型鲁棒性迁移技术

不同敌手能力假设

不同深度神经网络

不同对抗攻击类型

泛化范围

𝑙1范数半径

𝑙2范数半径

𝑙∞范数半径

验证界限

不可预见对抗攻击的
鲁棒防御问题

模型鲁棒评估结果的
可靠性问题

模型鲁棒增强训练的
昂贵开销问题

对抗样本多样性 鲁棒性形式化保证 鲁棒训练成本

绪    论

跨数据域迁移

跨模型结构迁移

跨数据域兼模型迁移

迁移场景
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面向深度神经网络的对抗鲁棒性关键技术研究主要贡献

基于潜在表征混合的

模型鲁棒性泛化技术

基于多阶随机平滑的

模型鲁棒性验证技术

基于对比表征蒸馏的

模型鲁棒性迁移技术

潜在表征学习

潜在空间插值

混合样本

多元线性组合

多元遮罩组合

未知样本

同构输入特征

异构输入特征

定义界限

零阶预测信息

一阶梯度信息

鲁棒证明

模型表征蒸馏

多视对比学习

萃取模型

绪    论

不同敌手能力假设

不同深度神经网络

不同对抗攻击类型

泛化范围

𝑙1范数半径

𝑙2范数半径

𝑙∞范数半径

验证界限

跨数据域迁移

跨模型结构迁移

跨数据域兼模型迁移

迁移场景



创新点 1 
提出基于多模式流形插值的数据扩增技术

提出基于语义混合样本的多目标训练技术

创新点 2 
提出基于多阶信息的自适应随机平滑技术

提出基于特征敏感性的维度鲁棒半径度量技术

创新点 3 
提出基于自适应维度对齐的跨域蒸馏技术

提出基于双重鲁棒感知的对比迁移学习技术

 本文主要贡献

13

绪    论

基于多阶随机平滑的对抗鲁棒性验证技术

基于对比表征蒸馏的对抗鲁棒性迁移技术

基于潜在表征混合的对抗鲁棒性泛化技术
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 对抗攻击威胁

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

max
𝛿

𝑝
≤𝜖

ℒ(𝐹𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑟𝑢𝑒)

➢ 流形外(Off-Manifold )对抗攻击

o 即输入空间对抗攻击

o 对抗扰动优化目标

o 代表性对抗攻击算法：FGSM, PGD, JSMA, 

DeepFool, CW, AutoAttack

𝑥 𝐹𝜃

𝛿

𝑦1𝑦2𝑦3𝑦4
𝛿

𝑝

≤ 𝜖

Object Manifold of  '3'

Object Manifold of  '8'

Decision Line / Hyperplane

Decision Curve / Hypersurface

输入空间: 
28x28 pixels→728 dimensions

类别流形

Latent Representation Mixup
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 对抗攻击威胁

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

max
𝛿

𝑝
≤𝜖

ℒ(𝐹𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑟𝑢𝑒)

➢ 流形外(Off-Manifold )对抗攻击

o 即输入空间对抗攻击

o 对抗扰动优化目标

o 代表性对抗攻击算法：FGSM, PGD, JSMA, 

DeepFool, CW, AutoAttack

➢ 流形上(On-Manifold )对抗攻击

o 即潜在空间对抗攻击

o 对抗扰动优化目标

o 代表性对抗攻击算法：OM-FGSM, 

OM-PGD

max
𝜁

𝑝
≤𝜂

ℒ(𝐹𝜃 𝐺𝜑(𝑧 + 𝜁) , 𝑦𝑡𝑟𝑢𝑒)

𝑥 𝐹𝜃

𝛿

𝑦1𝑦2𝑦3𝑦4
𝛿

𝑝

≤ 𝜖

𝑥 𝐹𝜃

𝜁

𝑦1𝑦2𝑦3𝑦4

𝐺𝜑
−1 𝑧

𝜁
𝑝

≤ 𝜂

𝐺𝜑
−1

Latent Representation Mixup
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 对抗攻击威胁

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

max
𝛿

𝑝
≤𝜖

ℒ(𝐹𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑟𝑢𝑒)

➢ 流形外(Off-Manifold )对抗攻击

o 即输入空间对抗攻击

o 对抗扰动优化目标

➢ 流形上(On-Manifold )对抗攻击

o 即潜在空间对抗攻击

o 对抗扰动优化目标

max
𝜁

𝑝
≤𝜂

ℒ(𝐹𝜃 𝐺𝜑(𝑧 + 𝜁) , 𝑦𝑡𝑟𝑢𝑒)

Clean  =0.02  =0.05  =0.1  =0.2  =0.3

OM-PGD CIFAR-10

Clean  =0.02  =0.05  =0.1  =0.2  =0.3

PGD CIFAR-10

Latent Representation Mixup
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 对抗攻击威胁

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

max
𝛿

𝑝
≤𝜖

ℒ(𝐹𝜃 𝑥 + 𝛿 , 𝑦𝑡𝑟𝑢𝑒)

➢ 流形外(Off-Manifold )对抗攻击

o 即输入空间对抗攻击

o 对抗扰动优化目标

➢ 流形上(On-Manifold )对抗攻击

o 即潜在空间对抗攻击

o 对抗扰动优化目标

max
𝜁

𝑝
≤𝜂

ℒ(𝐹𝜃 𝐺𝜑(𝑧 + 𝜁) , 𝑦𝑡𝑟𝑢𝑒)

PGD SVHN

Clean  =0.02  =0.05  =0.1  =0.2  =0.3 Clean  =0.02  =0.05  =0.1  =0.2  =0.3

OM-PGD SVHN

Latent Representation Mixup
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 鲁棒训练方法

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

➢ 针对流形外(Off-Manifold )对抗攻击

o 输入空间对抗训练

o 混合训练

o 输入空间混合训练

o 隐层空间混合训练

➢ 针对流形上(On-Manifold )对抗攻击

o 潜在空间对抗训练

对抗训练 混合训练标准训练

Latent Representation Mixup



20

 Latent Representation Mixup (LarepMixup) 框架

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

(a) 低维流形嵌入模块 (b) 潜在空间表征混合模块 (c) 语义混合样本多目标训练模块

研究不依赖任何敌手知识的深度神经网络的对抗鲁棒性泛化技术具有重要意义

Latent Representation Mixup
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 阶段一：低维流形嵌入

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

➢ 基于StyleGAN的潜在表征学习

o 生成模型 𝐺−1(𝑥, 𝑦𝑡𝑟𝑢𝑒) → (𝑧, 𝑦𝑡𝑟𝑢𝑒)

➢ 流形上未知数据生成

o 随机采样潜在表征，合成未知样本

x in Dtrain G(z) x in Dtest G(z) G(z)

Latent Representation Mixup
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 阶段一：低维流形嵌入

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

➢ 基于StyleGAN的潜在表征学习

o 生成模型 𝐺−1(𝑥, 𝑦𝑡𝑟𝑢𝑒) → (𝑧, 𝑦𝑡𝑟𝑢𝑒)

➢ 流形上未知数据生成

o 随机采样潜在表征，合成未知样本

x in Dtrain G(z) x in Dtest G(z) G(z)

Latent Representation Mixup
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 阶段二：多模式流形插值

基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

d1

d3

d2
O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

Zi

d1

d3

d2

Zi

O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

➢ 基于线性组合的插值

o 混合样本

o 混合标签

o 插值系数

➢ 基于二值遮罩组合的插值

o 混合样本

o 混合标签

o 插值系数

𝑧𝑚𝑖𝑥 = 𝛼1𝑧1 + ⋯ + 𝛼𝑘𝑧𝑘

𝑦𝑚𝑖𝑥 = 𝛼1𝑦1 + ⋯ + 𝛼𝑘𝑦𝑘

𝛼 ∈ 𝐴 ≔ {𝑅𝑘, 𝛼𝑖 ∈ 0,1 , σ𝑖=0
𝑘 𝛼𝑖 = 1} 

𝑧𝑚𝑖𝑥 = 𝑚1𝑧1⨀ … ⨀𝑚𝑘𝑧𝑘

𝑦𝑚𝑖𝑥 = 𝜆1𝑦1 + ⋯ + 𝜆𝑘𝑦𝑘

𝑚𝑖 ∈ 𝐵 ≔ 0,1 𝑛, σ𝑖=0
𝑘 𝑚𝑖 = 1𝐵 

λ𝑖 =
𝑁𝑢𝑚𝑚𝑖=1

𝑛
  

• 从 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 中抽取 𝑝。
• 如果 𝑘=2，从 𝑛重 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 中抽取 𝑚1，𝑛 是 𝑧 的维度。
• 如果 𝑘>2，从 𝑞重 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 中抽取 𝑚2 ，𝑞 是向量 1𝐵 −𝑚1 中非零元素的数量。

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

xi xj convex mix mask mix xj xk convex mix mask mixxi
xi xj convex mix mask mix xj xk convex mix mask mixxi

 阶段二：多模式流形插值

➢ 基于线性组合(Convex Combination)的二元/三元插值

➢ 基于二值遮罩组合(Binary Mask combination)的二元/三元插值

源1 源2 线性 源1 源2 线性 遮罩 源1 源2 线性 遮罩源3

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 阶段三：多目标混合训练

➢ 常规训练

o 在原始干净的训练集上训练 DNN

o 基于独热编码的交叉熵损失

o 优化目标

➢ 微调训练

o 在扩增数据集上重新训练原始 DNN

o 基于软标签的交叉熵损失

o 优化目标

𝐷𝑜𝑟𝑖_𝑡𝑟𝑎 = {(𝑥, 𝑦𝑡𝑟𝑢𝑒)}

𝐿 𝑓 𝑥 , 𝑦𝑡𝑟𝑢𝑒 = σ𝑖=1
𝐶 𝑦𝑖 log(𝑝𝑖) 

min
𝜃

𝔼 𝑥,𝑦 ~𝐷𝑜𝑟𝑖_𝑡𝑟𝑎
𝐿(𝑓𝜃(𝑥, 𝑦))

𝐷𝑓𝑖𝑛_𝑡𝑢𝑛 = 𝐷𝑚𝑖𝑥 ∪ 𝐷𝑜𝑟𝑖_𝑡𝑟𝑎

𝐿𝑠𝑜𝑓𝑡 𝑓 𝑥 , 𝑦𝑚𝑖𝑥

= 𝐿𝑠𝑜𝑓𝑡 𝑓 𝑥 , 𝛼1𝑦1 + ⋯ + 𝛼𝑘𝑦𝑘

= 𝛼1𝐿 𝑓 𝑥 , 𝑦1 + ⋯ + 𝛼𝑘𝐿(𝑓 𝑥 , 𝑦𝑘)

min
𝜃

𝔼 𝑥,𝑦 ~𝐷𝑓𝑖𝑛_𝑡𝑢𝑛
𝐿𝑠𝑜𝑓𝑡(𝑓𝜃(𝑥, 𝑦))

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –实验设置

➢ 环境

o PyTorch 1.8.1、CUDA V11.1.74

o NVIDIA GV102 GPU

➢ 数据集

o CIFAR-10、SVHN

o ImageNet-Mixed10（10 个类别）

➢ 模型

o 基于卷积块：Alexnet 和 VGG

o 基于残差块：ResNet、DenseNet、

PreActResNet 和 WideResNet

o 基于 Inception 块：GoogLeNet

➢ 攻击方法

o 流形外攻击 (5)：FGSM、PGD、

AutoAttack、DeepFool、CW

o 流形内攻击 (2)：OM-FGSM、OM-PGD

o 感知攻击 (4)：Fog, Snow, Elastic, JPEG

➢ 防御方法对比

o 标准训练

o 混合训练方法 (5)

o 对抗训练方法 (2)

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –实验设置

➢ 对比防御方法的敌手能力与防御者能力假设比较

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –横向对比实验

➢ 与SOTA混合训练的性能比较

o 流形外扰动 𝛿 预算 ϵ=0.05，单步预算为0.02。

o 流形上扰动 𝜁 预算  =0.05，单步预算为0.005。

线性插值

遮罩插值

粗体：冠军

下划线：亚军

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –横向对比实验

➢ 与SOTA混合训练的性能比较

o 流形外扰动 𝛿 预算 ϵ=0.05，单步预算为0.02。

o 流形上扰动 𝜁 预算  =0.05，单步预算为0.005。

线性插值

遮罩插值

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –横向对比实验

➢ 与SOTA对抗训练的性能比较

o 流形外扰动 𝛿 预算 ϵ=0.05，单步预算为0.02。

o 流形上扰动 𝜁 预算  =0.05，单步预算为0.005。

✓ 位置越左的得分表
示在干净样本上准
确率越高。

✓ 越上的分数表示在
对抗样本上准确率
越高。

✓ 相同颜色表示一组
比较结果。

SVHNCIFAR-10

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –横向对比实验

➢ 与SOTA对抗训练的性能比较

o 流形外扰动 𝛿 预算 ϵ=0.05，单步预算为0.02。

o 流形上扰动 𝜁 预算  =0.05，单步预算为0.005。

✓ 位置越左的得分表示
在干净样本上准确率
越高。

✓ 越上的分数表示在对
抗样本上准确率越高。

✓ 相同颜色表示一组比
较结果。

SVHNCIFAR-10

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –横向对比实验

➢ 与SOTA对抗训练的性能比较

o 流形外扰动 𝛿 预算 ϵ=0.05，单步预算为0.02。

o 流形上扰动 𝜁 预算  =0.05，单步预算为0.005。

CIFAR-10 SVHN

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

CIFAR-10 SVHN

➢ 针对不同对抗 𝑙𝑝 攻击预算的鲁棒性：

o 流形外扰动 𝛿 预算 ϵ ∈{0.02, 0.05, 0.1, 0.2, 0.3}，单步预算为0.02。

o 流形上扰动 𝜁 预算   ∈{0.02, 0.05, 0.1, 0.2, 0.3}，单步预算为0.005。

𝜹
𝒑
≤ 𝝐 和 𝜻

𝒑
≤ 𝜼

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

➢ 针对不同对抗 𝑙𝑝 攻击预算的鲁棒性：

o 流形外扰动 𝛿 预算 ϵ ∈{0.02, 0.05, 0.1, 0.2, 0.3}，单步预算为0.02。

o 流形上扰动 𝜁 预算   ∈{0.02, 0.05, 0.1, 0.2, 0.3}，单步预算为0.005。

CIFAR-10 SVHN

𝜹
𝒑
≤ 𝝐 和 𝜻

𝒑
≤ 𝜼

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

➢ 针对非𝑙𝑝感知攻击的鲁棒性。

o 雾化、雪化、弹性、JPEG 压缩攻击

CIFAR-10

Clean

Fog

Snow

Elastic

JPEG

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

➢ 针对非𝑙𝑝感知攻击的鲁棒性。

o 雾化、雪化、弹性、JPEG 压缩攻击

CIFAR-10 SVHN

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

➢ 针对非𝑙𝑝感知攻击的鲁棒性。

o 雾化、雪化、弹性、JPEG 压缩攻击

CIFAR-10 SVHN

Latent Representation Mixup
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基于潜在空间表征混合的深度神经网络鲁棒性泛化方案

方案一

 实验评估 –纵向对比实验

➢ 不同混合模式的鲁棒性。

o 二元 / 三元 + 线性 / 遮罩插值

o 高维ImageNet数据集

流形外

流形上

Latent Representation Mixup
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方案一

结 论

 设计了一种基于多模式流形插值的数据扩增策略，支持以多元线

性混合和二值遮罩混合两种模式混合数据流形上的潜在表征，以

此合成接近模型决策边界或符合训练数据潜在分布的混合样本。

 提出了一个基于语义混合样本的多目标训练算法，利用混合样本

和混合标签学习平滑的深度神经网络决策边界，增强其对边界附

近扰动的鲁棒性。

 在多种基于深度神经网络的图像分类模型和数据集上对所提的鲁

棒性泛化方案进行实验评估。在白盒和黑盒场景中应对对抗攻击

时，所提方法实现了像素级和表征级对抗鲁棒性的增强，提升了

鲁棒性在广泛的输入空间和潜在空间扰动上的泛化能力。

Latent Representation Mixup



➢ Mengdie Huang, Yi Xie, Xiaofeng Chen, Jin Li, Changyu Dong, Zheli Liu, Willy Susilo.

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent

Representation Mixup [C]. ACM Asia Conference on Computer and Communications

Security (AsiaCCS), 2023, 1(1):716-730.（2类贡献度）

主要成果发表在密码学会推荐 B 类 会议 , CCF 推荐网络与信息安全 C 类 会议 

ACM Asia Conference on Computer and Communications Security (AsiaCCS)
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 主要成果

方案一Latent Representation Mixup
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 深度神经网络鲁棒防御角度

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

➢ 经验防御 (Empirical Defense)

o 通过启发式训练提升鲁棒性

➢ 可验证防御 (Certified Defense)

o 通过可验证半径提供鲁棒性证书

𝛿

FGSM

∗

𝑥

𝑥1
∗

𝑥2
∗

𝑥3
∗

𝑥4
∗

𝑥5
∗

𝛿
∗

𝑅

𝑥

Multi-Order Adaptive 
Randomized Smoothing
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 深度神经网络鲁棒防御角度

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

➢ 证书形式

o 可验证鲁棒半径𝑅

➢ 验证内容

o 对于任意输入𝑥，保证DNN分类器 𝐹

对 𝑥 周围以𝑙𝑝范数度量的半径为 𝑅 的

领域内数据点的预测是一致的，即该

区域内任意对输入𝑥的微小扰动（如

对抗攻击）都无法改变模型预测结果。

➢ 可验证防御优势：

o 验证半径𝑅衡量了模型在输入空间中

能抵抗对抗攻击的最大扰动范围。

➢ 可验证防御 (Certified Defense)

o 通过可验证半径提供鲁棒性证书

(𝑥, 𝐹, 𝑅)

𝛿
∗

𝑅

𝑥

Multi-Order Adaptive 
Randomized Smoothing
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基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 可验证𝒍𝒑鲁棒半径类型

➢ 多类（四类）分类器在输入样本 𝑥 上的 𝑙𝑝 有界鲁棒验证半径

➢ 颜色越深，表示模型对输出的预测类别的置信度越高

➢ 𝑅𝑢 和 𝑅𝑙 分别是模型在𝑥上的精确鲁棒半径 𝑅𝑒 的上下界

Multi-Order Adaptive 
Randomized Smoothing
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基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 Multi-Order Adaptive Randomized Smoothing (MARS) 框架

➢ 预测过程

➢ 目标：分类器预测输入 𝑥 的类别

o 选择平滑分布 𝒟

o 采样𝑛𝑠𝑚𝑎𝑙𝑙(100)个噪声向量𝜂添加到 𝑥

o 分类器预测并确定冠军类和亚军类

➢ 验证过程

o 目标：计算𝑙𝑝 可验证鲁棒半径𝑅

o 采样𝑛𝑙𝑎𝑟𝑔𝑒 (10,000)个噪声𝜂加到 𝑥

o 统计冠军类、亚军类预测频率

o 使用统计假设检验估计鲁棒半径

Multi-Order Adaptive 
Randomized Smoothing
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基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 阶段一：平滑分布参数优化

➢ 分布形状优化

➢ 分布规模优化

➢ 各维度具有相同或不同 𝜎 值的二元高斯分布 𝑁(𝜇, 𝜎) 的 PDF

Multi-Order Adaptive 
Randomized Smoothing
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基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 阶段二：基于梯度的认证区域扩展

➢ 使用零阶概率信息和一阶梯度信息共同计算认证半径

Multi-Order Adaptive 
Randomized Smoothing
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基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 阶段三：维度半径权重计算

➢ 维度特征敏感性分析

➢ 维度半径贡献量化：

Multi-Order Adaptive 
Randomized Smoothing



基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

方案二

 阶段四：平滑分布多样性

➢ 多样概率分布采样区域对齐不同𝑙𝑝有届区域

➢ 随机采样10,000个噪声样本

高斯分布对齐 𝑙2采样区域 拉普拉斯分布对齐 𝑙1 采样区域 均匀分布对齐 𝑙∞ 采样区域

49

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –实验设置

➢ 环境

o PyTorch 2.0.1、SciPy V 1.11.2, CUDA V 

11.7

o NVIDIA GeForce 3090 GPU

➢ 数据集

o CSE-CIC-IDS-2018

• DosHolk-Drift Dataset

• Inflation-Drift Dataset

• Diverse Intrusion Dataset

• Similar Intrusion Dataset

➢ 模型

o CADE

o ACID

➢ 攻击方法

o 对抗攻击：𝑙2-PGD, 𝑙1-PGD, 𝑙∞-PGD, 

EAD

o 自然损坏：Latency, Packet Loss

➢ 可验证防御对比方法

o 随机平滑 (VRS)

o 一阶随机平滑 (FRS)

o 边界自适应随机平滑 (BARS)

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –实验设置

➢ 自然损坏(Natural Corruption)下受到干扰的特征

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –实验设置

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

➢ 评估指标

o 可验证鲁棒性 (Certified Robustness)

• 平均验证半径

• 认证准确率

o 经验鲁棒性 (Empirical Robustness)

• 对抗（恶意）样本的鲁棒准确率

• 损坏（恶意和良性）样本的鲁棒准确率

o 常规预测性能 Regular Predictive Performance

• 干净准确率

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –实验设置

➢ 用于评估的网络入侵检测 (Network Intrusion Detection,NID) 数据集信息

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –实验设置

➢ 可验证防御方法比较

o 异构性支持

o 跨模型支持

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

o 鲁棒证书多样性

o 经验评估多样性

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

➢ 𝑙2鲁棒性保证：平均认证半径 (MCR) 比较

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

➢ 𝑙2鲁棒性保证：可验证准确率比较 

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

➢ 𝑙𝑝鲁棒性保证：平均认证半径 (MCR) 比较

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

➢ 经验鲁棒性比较: 针对不同对抗攻击

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

➢ 经验鲁棒性比较: 针对不同强度自然损坏

Multi-Order Adaptive 
Randomized Smoothing

Multi-Order Adaptive 
Randomized Smoothing
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方案二

➢ 针对具有相似网络入侵

类别的细粒度分类任务

• DoS-GoldenEye

• DoS-SLowHTTPTest

• DoS-LOICHTTP

o 𝑙2, 𝑙1, 𝑙∞ 鲁棒性保证：

比较平均认证半径 (MCR)

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

 实验评估 –横向对比实验

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –横向对比实验

➢ 针对相似入侵类别的细粒度分类：经验鲁棒性比较

o 针对不同自然损坏

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –纵向对比实验

➢ 维度级可验证半径比较

o Last-5 鲁棒特征

• 最敏感的五个特征维度

• 半径越小，表示对模型

的敏感度和重要性越高，

因为扰动这些特征更有

可能改变模型的预测

o Top-5 鲁棒特征

• 最鲁棒的五个特征维度

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 –纵向对比实验

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

➢ 𝑙1鲁棒性保证：平均认证半径 (MCR) 比较

o 不同平滑分布

Multi-Order Adaptive 
Randomized Smoothing
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方案二

 实验评估 – 纵向对比实验

➢ 针对相似入侵类别的

细粒度分类：

o 𝑙𝑝鲁棒半径验证

o 不同可验证防御方法

o 平均认证半径 (MCR)

o 平均验证时间 (ACT) 

(每个样本/秒）

基于多阶自适应随机平滑的深度神经网络鲁棒性验证方案

Multi-Order Adaptive 
Randomized Smoothing
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方案二

结 论

 提出了一个基于多阶信息的自适应随机平滑算法，利用平滑分类

器的零阶输出和一阶梯度信息，搜索多种范数度量下的鲁棒半径，

获得了比现有方法更紧的深度神经网络对抗鲁棒性下界。

 设计了一种基于特征敏感性的逐维鲁棒半径度量算法，通过量化

输入特征各维度的鲁棒性权重计算维度级鲁棒半径，实现了适用

于具有异构特征的输入样本的细粒度对抗鲁棒性验证。

 本文在多种基于深度神经网络的网络入侵检测模型和数据集上对

所提的鲁棒性验证方案进行了实验评估。结果表明，所提方法在

更大的𝑙𝑝范数约束的扰动区域内成功验证了模型的对抗鲁棒性，

增强了模型针对多种对抗攻击和自然损坏的鲁棒性。

Multi-Order Adaptive 
Randomized Smoothing



➢ Mengdie Huang, Yingjun Lin, Xiaofeng Chen, Elisa Bertino. Dimensional Robustness

Certification for Deep Neural Networks in Network Intrusion Detection Systems [J]. ACM

Transactions on Privacy and Security (TOPS), 2025, 1-33.（1类贡献度）

主要成果已发表在CCF推荐网络与信息安全 B 类、中科院JCR 三区 期刊 

ACM Transactions on Privacy and Security (TOPS)
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 主要成果

方案二Multi-Order Adaptive 
Randomized Smoothing
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基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

 多种迁移场景

跨数据域迁移

跨模型迁移 鲁棒性能

常规性能

方案三Contrastive Adversarial 
Representation Distillation
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(a)鲁棒性感知视图构建 (b)自适应维度对齐 (c)对比表征蒸馏学习

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

 Contrastive Adversarial Representation Distillation (CARD) 框架

研究适用多种迁移场景的深度神经网络的对抗鲁棒性迁移技术具有重要意义

方案三Contrastive Adversarial 
Representation Distillation
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基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

 阶段一：鲁棒性感知对比视图构建 

➢ 对比学习的目标

o 锚样本：

o 正样本对 (Positive Pair)：(𝑥, 𝑥+) 

鼓励对相似的样本学习到相近的特征表示

o 负样本对 (Negative Pair): (𝑥, 𝑥−) 

鼓励对不相似的样本学习到远离的特征表示

➢ 常规对比学习的正视图 𝑥+ 来源

o 旋转或翻转等数据扩增

o 鲁棒性感知对比学习

o 正视角一：对抗扰动

o 正视角二：自然损坏

𝑥

𝑥, 𝑥1
+ = 𝑥, 𝑥∗ = 𝑥, 𝑥 + 𝛿

𝑥, 𝑥2
+ = 𝑥, ෤𝑥 = 𝑥, 𝑥 + 𝛿

方案三Contrastive Adversarial 
Representation Distillation
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基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

 阶段二：自适应维度对齐

➢ 跨数据域迁移学习

o 源域数据集输入空间维度

与目标域数据集输入空间

维度不匹配

o 输入空间维度对齐

➢ 跨模型迁移学习

o 源域模型隐藏层表征维度

与目标域模型隐藏层表征

维度不匹配

o 隐层表征空间维度对齐

方案三Contrastive Adversarial 
Representation Distillation
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基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

 阶段三：对比表征蒸馏学习

➢ 对比损失：

o 目标域模型学习源域模型鲁棒表征能力

➢ 蒸馏损失 (在仅跨模型的迁移中生效)

o 目标域模型学习源域输入类比分布

➢ 分类损失

o 目标域模型自主学习干净样本和对抗样本

➢ 综合损失

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 环境

o PyTorch 2.2.0、CUDA V 12.1、NVIDIA GeForce RTX 3090 GPU 

➢ 模型

➢ 数据集

o 源域数据集 (2)：UNSW-NB15 (NoExploit)， NSL-KDD (All).

o 目标域数据集 (2)：UNSW-NB15 (WithExploit)，UNSW-NB15 (All).

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 数据集

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 评估指标

o 准确率 (Acc)、F1 分数 、召回率、精确率 (Precis)、假正率 (FPR) 和假负率 (FNR)。

o 在干净样本（e.g. CleAcc）、对抗样本（ e.g. AdvAcc）和损坏样本（ e.g. CorAcc）

上的结果分别揭示了目标模型的干净性能、对抗鲁棒性和自然鲁棒性。

o 每个报告值代表三个随机种子（41，42，43）设定下的平均结果。

➢ 攻击配置

o 对对抗攻击的评估包括三部分：A(结合了 DeepFool 和 Auto-PGD) , 自适应攻击。

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 对比方法

o 标准微调FT， 知识蒸馏KD；对抗性微调：FRFE, TWINS；对抗性蒸馏：VAD, AAD.

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation



 实验评估 –实验设置

➢ 迁移场景划分

o 目标域任务与源域任务

的数据域相似性

o 目标域任务与源域任务

的模型相似性

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

77

Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 迁移场景划分

o 相同输入特征空间的鲁棒性迁移

o 目标域NID数据集与源域NID数据集的输入特征空间相同，即输入特征定义和

维度数相同。对于此场景，使用 UNSW-NB15 (NoExploit) 作为源域数据集，使

用UNSW-NB15 (WithExploit) 作为目标域数据集。

o 不同输入特征空间的鲁棒性迁移

o 目标域NID数据集与源域NID数据集的输入特征空间不同，即输入特征定义和

维度数均不同。对于此场景，使用 NSL-KDD (All) 作为源域数据集，使用 

UNSW-NB15 (All) 作为目标域数据集。

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 迁移场景划分

o 具有相同基础块结构的模型间的鲁棒性迁移

o 目标模型与源域模型的基础块结构相同。对于此场景，使用 WideResNet-34-

10作为源模型，使用ResNet-18作为目标模型。

o 具有不同基础块结构的模型间的鲁棒性迁移

o 目标模型与源域模型的基础块结构不同。对于此场景，使用 WideResNet-34-

10作为源模型，使用MobileNet作为目标模型。

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –实验设置

➢ 迁移场景划分

o 相同输入特征空间的迁移 UNSW-NB15 (NoExploit) → UNSW-NB15 (WithExploit) 

• 目标域与源域数据集的输入特征空间相同，即特征定义和维度数都相同。

o 不同输入特征空间的迁移NSL-KDD (All) → UNSW-NB15 (All) 

• 目标域与源域NID数据集的输入特征空间不同，即特征定义和维度数均不同。

➢ 网络流量分类 (入侵检测粒度)划分

o 多分类模型间迁移

• 9 分类UNSW-NB15 (NoExploit) → 2分类UNSW-NB15 (WithExploit)

• 5分类NSL-KDD (All) → 10 分类UNSW-NB15 (All) 

o 二分类模型间迁移

• 2 分类UNSW-NB15 (NoExploit) →2 分类UNSW-NB15 (WithExploit)

• 2 分类NSL-KDD (All) → 2 分类UNSW-NB15 (All) 

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –横向对比实验

➢ 针对跨数据域的迁移学习任务：与 SOTA 微调技术的性能比较

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

5%

综合性能对比 对抗鲁棒性细粒度性能对比

Contrastive Adversarial 
Representation Distillation
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 实验评估 –横向对比实验

➢ 针对跨模型结构的迁移学习任务：与SOTA蒸馏技术的比较 （ResNet-18）

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

综合性能对比 对抗鲁棒性细粒度性能对比

5%

Contrastive Adversarial 
Representation Distillation



83

 实验评估 –横向对比实验

➢ 针对跨模型结构的迁移学习任务：与SOTA蒸馏技术的比较 （MobileNet）

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

综合性能对比 对抗鲁棒性细粒度性能对比

5%

Contrastive Adversarial 
Representation Distillation
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 实验评估 –横向对比实验

➢ 针对跨数据域和模型结构的迁移学习任务：与标准从零训练技术的比较

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

综合性能对比 对抗鲁棒性细粒度性能对比

5%

Contrastive Adversarial 
Representation Distillation
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 实验评估 –横向对比实验

➢ 针对跨数据域和模型结构的迁移学习任务：与标准从零训练技术的比较

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

5%

综合性能对比 对抗鲁棒性细粒度性能对比

Contrastive Adversarial 
Representation Distillation



86

 实验评估 –纵向对比实验

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

➢ 目标域训练数据数量的影响

o 针对跨数据域迁移学习任务

➢ 目标域训练数据数量的影响

o 针对跨模型结构迁移学习任务

5%~50%

Contrastive Adversarial 
Representation Distillation



 实验评估 –纵向对比实验

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

➢ 目标域训练数据数量的影响

o 针对跨数据域和模型结构的

迁移学习任务

o 从基于WideResNet-34-10的

鲁棒5分类NSL-KDD(All)探测

器生成基于MobileNet的10分

类 UNSW-NB15(All)检测器

5%~50%

87

Contrastive Adversarial 
Representation Distillation
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 实验评估 –纵向对比实验

➢ 跨模型结构迁移学习任务中损失函数的消融研究

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

5%

Contrastive Adversarial 
Representation Distillation
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 实验评估 –纵向对比实验

➢ 自适应攻击

o 策略1：基于源模型的自适应攻击（SM-Adapt）

o 策略2：基于扰动聚合的自适应攻击（AA-Adapt）

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation
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 实验评估 –纵向对比实验

➢ 自适应攻击

o 策略1：基于源模型的自适应攻击（SM-Adapt）

o 策略2：基于扰动聚合的自适应攻击（AA-Adapt）

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三Contrastive Adversarial 
Representation Distillation



 实验评估 –纵向对比实验

➢ 自适应攻击

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

91

Contrastive Adversarial 
Representation Distillation



 实验评估 –纵向对比实验

➢ 时间评估

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

92

Contrastive Adversarial 
Representation Distillation



 实验评估 –纵向对比实验

➢ 时间评估

基于对比对抗表征蒸馏的深度神经网络鲁棒性迁移方案

方案三

93

Contrastive Adversarial 
Representation Distillation
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方案三

结 论

 设计了一种基于自适应维度对齐的蒸馏策略，引入嵌入网络对齐目

标模型与源模型的输入维度以及隐层表征维度，以支持数据域和模

型变化时的知识迁移。

 提出了一种基于双重鲁棒感知的对比迁移学习算法，利用输入样本

的对抗操纵和自然损坏视图，捕获和学习源表征空间中的领域不变

鲁棒信息，以实现通用对抗鲁棒性的迁移。

 在多种基于深度神经网络的网络入侵检测模型和数据集上对所提的

鲁棒性迁移方案进行了实验评估。结果表明，所提方法增强了对抗

鲁棒性在跨数据域和跨模型任务间的迁移效果，在数据有限的轻量

级模型中实现了领先的对抗鲁棒性。

Contrastive Adversarial 
Representation Distillation



➢ Mengdie Huang, Yingjun Lin, Ninghui Li, Xiaofeng Chen, Elisa Bertino. CARD:

Robustness-Preserving Transfer Learning for Network Intrusion Detection via Contrastive

Adversarial Representation Distillation [J]. IEEE Transactions on Dependable and Secure

Computing (TDSC), 2025, 1-18.（1类贡献度 ）

主要成果已发表在CCF推荐网络与信息安全 A 类、中科院JCR 二区 期刊

IEEE Transactions on Dependable and Secure Computing (TDSC)
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 主要成果

方案三Contrastive Adversarial 
Representation Distillation
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结论与展望

结 论

 提出基于潜在空间表征混合的深度神经网络对抗鲁棒性泛化方案

Latent Representation Mixup (LarepMixup)。

 提出基于多阶自适应随机平滑的深度神经网络对抗鲁棒性验证方案

Multi-Order Adaptive Randomized Smoothing (MARS)。

 提出基于对比对抗表征蒸馏的深度神经网络对抗鲁棒性迁移方案

Contrastive Adversarial Representation Distillation (CARD)。

展望

 研究非图像数据域潜在空间混合训练技术。

 研究多模态基础模型的对抗鲁棒性可验证防御方法。

 研究基础模型到下游模型的鲁棒性迁移技术。



➢ Mengdie Huang, Yingjun Lin, Ninghui Li, Xiaofeng Chen, Elisa Bertino. CARD:
Robustness-Preserving Transfer Learning for Network Intrusion Detection via Contrastive
Adversarial Representation Distillation [J]. IEEE Transactions on Dependable and Secure
Computing (TDSC), 2025, 1-18.（CCF-A, 1类贡献度 ）

➢ Mengdie Huang, Yingjun Lin, Xiaofeng Chen, Elisa Bertino. Dimensional Robustness
Certification for Deep Neural Networks in Network Intrusion Detection Systems [J]. ACM
Transactions on Privacy and Security (TOPS), 2025, 1-33.（CCF-B, 1类贡献度）

➢ Mengdie Huang, Yi Xie, Xiaofeng Chen, Jin Li, Changyu Dong, Zheli Liu, Willy Susilo.
Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent
Representation Mixup [C]. ACM Asia Conference on Computer and Communications
Security (AsiaCCS), 2023, 1(1):716-730.（CACR-B, 2类贡献度）

➢ Mengdie Huang, Yingjun Lin, Xiaofeng Chen*, Elisa Bertino. MARS: Robustness
Certification for Deep Network Intrusion Detectors via Multi-Order Adaptive Randomized
Smoothing [C]. IEEE International Conference on Trust, Security, and Privacy in Computing
and Communications (TrustCom). 2024. 767-774. (CCF-C, 3类贡献度)
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专家质询问题

盲审专家一

 对抗攻击的样本形式是否会对未见的对抗攻击产生影响？

回答要点：

➢ 对于常规对抗训练而言，不同攻击方法生成的对抗样本具有不同的扰动分

布特性，因此对抗训练过程中采用的对抗样本生成形式可能会对目标模型

面对未见对抗攻击时的鲁棒性表现产生影响。

➢ 对于我们提出的对抗鲁棒性泛化和验证方案而言，由于防御过程不涉及任

何指定类型的对抗样本，因此目标模型在面对未见的对抗攻击时仍然具有

良好的鲁棒性。

➢ 对于我们提出的对抗鲁棒性迁移方案，下游目标模型的鲁棒性来自于对源

模型的继承和适应，并且强化了对通用鲁棒表征的学习，因此目标模型在

面对未见的两类自适应对抗攻击时也表现出了良好的鲁棒性。



专家质询问题

盲审专家一

 样本攻击的数据形式是否会对对抗鲁棒性产生影响？

回答要点：

➢ 样本的数据形式包含样本的模态结构和分布特征等。

➢ 对于样本的模态结构，通过我们对对抗鲁棒性验证方案的实验评估可知，

针对具有同构特征的图像数据提出的鲁棒性验证基准方案在具有异构特征

的网络流量数据上有效性会下降。因此可以得到初步结论，面对同一防御

算法，样本攻击的模态结构会对模型的对抗鲁棒性产生一定影响，因此需

要特定于样本模态的设计。

➢ 对于样本的分布特征，通过我们对对抗鲁棒性迁移方案的实验评估可知，

模型的鲁棒性常在标准的跨域迁移学习后下降。但是通过特定于目标域的

鲁棒性适应和强化算法，可以进一步缓解其对模型的对抗鲁棒性的影响。
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专家质询问题

 估算这三项工作的计算开销？

回答要点：

➢ 工作一：对抗鲁棒性泛化。以CIFAR-10数据集为例，在CIFAR-10上训练

StyleGAN 模 型 280 个 epoch ， 每 个 epoch 耗 时 约 218 秒 ； 训 练

WideResNet28-10模型40个epoch，每个epoch耗时约700秒。

➢ 工作二：对抗鲁棒性验证。MARS防御的CADE对每个样本的平均认证时

间为8.0～14.6毫秒，ACID为24.4～36.1毫秒。MARS防御的CADE认证

2K个渗透（Infiltration）或暴力破解（SSH-Bruteforce）恶意流量样本

大约需要28秒，认证13K个良性流量样本或10K个DoS-Hulk恶意流量样

本需要大约125秒。

➢ 工作三：对抗鲁棒性迁移。跨数据域迁移平均每个epoch的时间为20.58

秒；跨模型迁移为4.40秒，跨数据域和模型迁移为3.15秒。

盲审专家二
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专家质询问题

 论文的三四五章所介绍的三个方案之间有什么关联性？

回答要点：

➢ 从对抗鲁棒性泛化、验证、迁移三个关键角度，系统地构建了一个相对完

整的对抗鲁棒性研究框架，三者相互独立又互为补充。

➢ 目标一致性：三章均围绕提升深度神经网络在面对对抗攻击时的可靠性展

开，尽管侧重点不同，但目标都是提高模型在真实复杂环境中的安全性。

➢ 层层递进的技术路径：训练阶段增强模型对未知对抗样本的鲁棒性；从理

论角度评估模型鲁棒性，提供了安全性下界；在模型轻量化或数据有限的

情况下，将已有鲁棒性迁移至新任务。

➢ 方法协同：三者不仅可以单独使用，也可以组合形成“训练→验证→迁移”

的闭环机制。LarepMixup用于生成鲁棒模型，MARS为其鲁棒性提供理

论保障，CARD则将该鲁棒能力迁移至其他系统中。

评审专家一 禹勇教授
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专家质询问题

 论文所介绍的三个方法是否适用于现实环境中的部署？

回答要点：

➢ 算法设计兼顾性能与开销：LarepMixup使用混合潜在表征的数据增强策

略，在训练过程中引入的计算开销较低；MARS通过高效的随机平滑技术

进行鲁棒性验证，具有较强的适配性和可扩展性；CARD采用蒸馏和对比

学习策略，在数据稀缺和计算资源有限的现实条件下依然能迁移鲁棒性，

适合轻量化部署。

➢ 系 统 性 与 模块 化 强 ： 三 个 方 法均 可 作 为 模 块 集 成至 已 有 AI系 统 中 ：

LarepMixup用于模型训练阶段，MARS用于上线前验证，CARD用于模型

升级与迁移部署，具有良好的工程集成性。

➢ 综上，论文中提出的三个方法设计上充分考虑了现实部署的可行性与落地

需求，具备在工业系统中实际应用的潜力。

评审专家一 禹勇教授
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专家质询问题

 虽然集中于神经网络的对抗鲁棒性相关方法研究。但研究内容一是

针对图像分类场景，研究内容二和三是针对网络入侵场景。研究内

容一的对抗性泛化方法是否可以应用到网络入侵场景中?

➢ 不同任务提供不同视角。图像任务中对抗样本主要依赖各维同构的视觉扰

动，网络入侵检测中则是各维异构的结构化数据，多场景研究有助于构建

对抗鲁棒性的更全面理论基础与实践体系，增强研究成果的广度与实用性。

➢ 可以, 但需要适当调整。LarepMixup依赖的潜在表征混合和多模态插值策

略本质上并不依赖于图像数据的结构，而是依赖于DNN中间层的语义表征

空间。因此，其核心思想在结构化的网络流量数据场景中也具备应用潜力。

评审专家二 陈晓江教授
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专家质询问题

 在研究内容一中，所提出的方法能够泛化到未知类型的对抗攻击。

何谓未知类型的对抗攻击？是否有对应的验证性实验?

回答要点：

➢ 未知类型（unseen/unknown）的对抗攻击指的是模型在训练阶段未曾见

过的攻击方式或攻击算法生成的对抗样本。

➢ 我们设计了专门的实验来验证这一点。

评审专家二 陈晓江教授
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• 训练：未使用任何

对抗攻击算法生成

对抗样本以供训练。

• 测试：引入了多种

攻击方式。



专家质询问题

 解释选择WideResNet-34-10作为(鲁棒的)源模型，选择ResNet-

18和MobileNet作为目标模型的理由。

回答要点：

➢ 旨在评估对抗鲁棒性迁移中不同模型结构组合对鲁棒性迁移效果的影响，

因此选择了两对具有代表性的源-目标模型架构。

➢ WideResNet-34-10→ResNet-18：此设置模拟迁移学习任务中，将鲁棒

知识从尺寸较大的模型迁移到基础块结构相似尺寸更小的模型。能够评估

在保持相似结构的情况下，模型压缩或轻量化是否保留鲁棒性迁移性能。

➢ WideResNet-34-10→MobileNet：此设置模拟更具挑战性的应用场景，

例如在资源受限环境中部署鲁棒模型。MobileNet代表了在移动端或嵌入

式设备中部署模型的典型选择。用于评估在构建块差异较大的情形下，鲁

棒特征能否迁移并保留有效性。

评审专家二 陈晓江教授
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专家质询问题

 深度神经网络包含了多种架构的网络模型，如CNN、RNN、

Seq2seq、Transformer、GNN等，解释说明所提方法是否可以应

用于所有的网络模型。

回答要点：

➢ 所 提 方 法 在 设 计 上 具 有 一 定 的 通 用 性 ， 核 心 思 想 具 有 模 型 无 关 性

（architecture-agnostic），因此原则上可推广到多种深度神经网络架构。

➢ 但由于不同模型架构间在特征表示、训练机制和输入形式上的差异，实际

应用中仍需针对目标模型进行机制适配与验证实验，以确保方法的有效性。

• CNN 的中间层特征是局部空间感知的图像特征。

• RNN / Seq2Seq 注重时间序列或语义依赖的隐藏状态。

• Transformer 使用自注意力机制，特征分布形式不同。

• GNN 使用图结构中的邻居聚合机制，特征嵌入方式独特。

评审专家二 陈晓江教授
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专家质询问题

 在对抗鲁棒性泛化方案中，提到了多目标训练算法，该算法相较于

现有其他算法有什么独特之处和优势？

回答要点：

➢ LarepMixup 提出了一个基于语义混合样本的多目标训练算法， 鼓励模型

在预测混合样本的类别时按照合成信息比例来学习不止一个目标标签，从

而平滑深度神经网络的决策边界。这一方法克服了传统的基于硬标签的对

抗训练方法容易产生过拟合的问题，提高了模型在未知样本上的泛化能力。

➢ 此外，相较已有混合训练算法，通过潜在表征空间混合生产的混合样本更

具有真实的语义，满足给定数据集的底层特征结构，因此更有利于模型学

习有意义的通用鲁棒表征。

评审专家三 王子龙教授

115



专家质询问题

 在对抗鲁棒性验证方案中，随机平滑是常见验证防御手段，多阶自

适应随机平滑算法（MARS）是否对比了最新的现有方法，理论上

如何保证优势？

回答要点：

➢ 在基于同构输入样本的图像分类任务中，基础的随机平滑及其扩展方法被

广泛研究。但对于具有异构输入的网络流量分类模型而言，可验证防御技

术的发展十分有限。

➢ 所提方法已与最新且唯一的适用于网络流量任务的前沿方法BARS进行了

全方位对比，并展现出稳定的鲁棒性验证半径及准确率优势。

➢ 理论上，通过结合模型在预测结果上的一阶梯度信息和二分查找，该算法

能够在从输入样本出发的更大的范围内，搜索有可能突破当前预测结果的

扰动样本，进而提供更紧的模型鲁棒性下届。

评审专家三 王子龙教授
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专家质询问题

 在对抗鲁棒性迁移方案中，文中的自适应维度对齐的蒸馏策略在面

对特征尺度低的问题中是否会导致模型参数增加？

回答要点：

➢ 所引入的自适应维度对齐层仅为迁移学习的辅助组件，不影响目标模型的

推理路径和部署体积。执行自适应维度对齐的模块是基于单层线性变换层，

参数开销相对极小。在特征尺度较低的情况下，线性变换的输入维度本身

就较小，对应的参数量和计算量进一步降低，不会显著增加目标模型的复

杂度或存储开销。

 在对比迁移学习中不同的迁移时机与迁移手段对鲁棒性的影响如何？

回答要点：

➢ 针对一个无法获得源域数据集的鲁棒源模型，所提方法相较以微调、蒸馏

为基础的不同迁移学习手段在多种跨数据域、跨模型的任务中都具有优势。

评审专家三 王子龙教授
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专家质询问题

 第四章研究了模型自然随机噪声下的鲁棒性验证，一般来说，训练

数据中自然就有噪声，模型在训练中应该较好地学习到了自然噪声

知识，好的模型对自然噪声是具有较高的容忍性的，那么在模型鲁

棒性验证中考虑自然噪声所增加的代价多大？是不是值得？ 

回答要点：

➢ 鲁棒性验证的核心目标是计算模型有关任意输入样本上的预测结果的鲁棒

半径，以评估模型对任何可能存在的对抗攻击或自然扰动的鲁棒性下届。

➢ 在模型预测时，通过引入自然噪声以实现可靠的预测和鲁棒性验证确实增

加了一定的时间成本，但代价相对较小，仅为毫秒级，且存储开销无增加。

➢ 而其带来的验证价值和可靠性意义显著高于代价本身。因此，在鲁棒性验

证中通过随机平滑引入自然噪声是相对值得的，有利于构建可信的AI系统。

评审专家四 吕锡香教授
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恳请各位专家老师批评指正

 谢谢！
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