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I Practical Case - Auto Driving

® Traffic sign must be read correctly

Response

Autopilot action: Stop Autopilot action: Speed limit
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Threats to Deep Neural Networks (DNNs)

® Adversarial Example

— %

g
Stop
R ¥
Clean Input 97 999
. 0
Speed Limit

——

-] m

Clean Input Perturbation Adversarial Input Deployed Model 99 539,
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I L, Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack Object (Class) Manifold

® Aka:
» Regular adversarial attack
» Input-space adversarial attack
» Pixel-space adversarial attack
® Optimization objective
max L(FH (x + 5):3’true)

151 |pSE ) d
x A > FG EE——
I ||p <e€ d,
yl 3’2 y3 Ya mm Object Manifold of '3' Decision Line / Hyperplane
 Object Manifold of '8' Decision Curve / Hypersurface
)
® FGSM, PGD, JSMA, DeepFool, CW, AutoAttack Input space: 28x28 pixels=>728 dimensions
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I L, Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack

® Aka:
» Regular adversarial attack
» Input-space adversarial attack
» Pixel-space adversarial attack

® Optimization objective

“grha)ie L(Fg(x + 6), Ytrue)
S

A

V1Y2Y3Ya

p=12

® FGSM, PGD, JSMA, DeepFool, CW, AutoAttack

Background Problem

Solution

On-manifold Adversarial (Example) Attack

® Aka:
» latent-space adversarial attack

® Optimization objective

||?|1|2)s(n L(Fy (G<p (z+ ())» Virue)

A

X —>G(;1—> Z 7.—G<;1—>F9 —

<
||C||p—77 Y1Y2Y3 Vs

¢
® OM-FGSM, OM-PGD
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I L, Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack On-manifold Adversarial (Example) Attack
® Aka: ® Aka:

» Regular adversarial attack » latent-space adversarial attack

» Input-space adversarial attack ® Optimization objective

» Pixel-space adversarial attack

max L(FglGy,(z+()),
® Optimization objective 1S1] = (Fo (G ( ) Yerue)

max L(Fg(x + &), Verue)
161 <€

PGD OM-PGD

CIFAR-10
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I L, Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack On-manifold Adversarial (Example) Attack
® Aka: ® Aka:

» Regular adversarial attack » latent-space adversarial attack

» Input-space adversarial attack ® Optimization objective

» Pixel-space adversarial attack
P max L(FH (G<p (Z + ())r:Vtrue)

® Optimization objective 11],=n
max L(FH (x + 5):3’true)
|16 ||pSE
Invalid
OM-PGD
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I Defense Methods Focused on Improving Adversarial Robustness of DNN

Against Off-manifold Adversarial Attack Against On-manifold Adversarial Attack
® Adversarial Training (AT): (X + 0, Virue) ® On-Manifold Adversarial Training (OMAT):
g h.lpu;(s}psal(\:/f—i¥ g L-ater[l)tusali?/lealr?iiold—AT (DMA"lg)G(p 75O Yirue)
 PGD-AT  FGSM-AT + OM-FGSM-AT
® Mixup Training: (ax; + (1 — a)x,, ay; + (1 —a)y,) * PGD-AT + OM-PGD-AT
» Input-space Mixup
. InputMixup Standard Training Adversarial Training Mixup Training
+  CutMix o 2 of [®|e
* PuzzleMixup ° ° ° e ° ® ®
» Hidden-space Mixup ° o ¢ ° ~ ¢ [o
* ManifoldMixup ® e o e o e
* PatchUp . ® o ° S ® e ° X
o o o o
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I Improve Off/On-Manifold Adversarial Robustness

® [Issuel:
» AT defenses require the defender to have some knowledge of the attack in advance, so that the defender can
actively generate adversarial examples for training.

® Issue 2:
» All of existing Mixup defenses focused on improving robustness to off-manifold adversarial attacks but ignores
on-manifold adversarial attacks and non-L,, attacks.

Problem to be solved:
Assume the attack knowledge is completely unknown, defender try to enhance the robustness against the off-
manifold and on-manifold adversarial attacks at the same time.

V @

® Idea: A

3
» Construct interpolation samples in the latent space where embedded with the approximately “pB :
exact manifold. L
* Off-manifold interpolation points = off-manifold robustness d\ i

* On-manifold interpolation points = on-manifold robustness
» Use the mixed label to supervise the learning, so that the model is encouraged to assign class probabilities
based on the interpolated proportion.

Background Problem
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I Framework of Proposed LarepMixup Training

I Mixup
Function

X Project Zmx  Generate =- Xmix
Ymix
. <
Project :
Classify
Low-dimensional Manifold Embedding Latent Representation Mixup Softlabel-based Training
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I Proposed Multi-mode Manifold Interpolation Strategy

Convex Combination-based Interpolation

® Mixed Sample Zmix
® Mixed Label
® Coefficient vector
a €A={R* a €013 a; =1}
» Case k = 2, sample a from Beta(f).

1Z1 + -+ apzy
a1yr + o AV

Ymix

» Case k > 2, sample a from Dirichlet(y).

Object Manifold of '3' \ Object Manifold of '3' \ \
d>
Z

ds

Decision Hypersurface

Decision Hwnersurface

Binary Mask Combination-based Interpolation

® Mixed Sample Zpix = M12:O ... Omyzy
® Mixed Label  YVmix = A1y1 + -+ LYk

® (Coefficient vector
m; € B = {0,1}", X, m; = 1p

Numy,.=1
—_ l
A = ———

n

» Case k = 2, sample m, from n-fold
Bernoulli(p), n is the dimension of z.

» Case k > 2, sample m, from g-fold
Bernoulli(p), q is the number of non-zero

elements in the vector 15 — m;.

——_ 1 ;dz >

Sample p from Uniform(0,1).

/ Object Manifold of '8'

d] dl

Background Problem

Solution

Z

/ Object Manifold of '8'
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I Embedding from Input Space to Latent Representation Space

(x' ytrue) - (Z' ytrue)

® Embedding network: trained styleGAN
® Embedding algorithm:

» Sample w randomly from Normal(0,1)

> t=0
> Z; =Fmap(W)
» Whilet < T do

© G(z)
* Zty1 = Zt — n(vthstyleGAN(G(Zt)rx))
e t=t+1

» End While

> Z =27

Background Problem

Solution

Visualization

® Indirectly demonstrates the quality of the learned
data manifold, composed of several object manifolds.

® (i (z) from D;,: Data distribution supported by the
learned manifold is close to the true data distribution.

® Unseen G (z) by sampling z with random seeds.

e - TN
Rl e S
e e e e BN

X in Dyrain G(z) X in Dyegt G(2) G(z2)
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I Embedding from Input Space to Latent Representation Space

(x' ytrue) - (Z' ytrue)

® Embedding network: trained styleGAN
® Embedding algorithm:

» Sample w randomly from Normal(0,1)

> t=0
> Zp = Fmap(W)

Background Problem

Solution

Visualization

® Indirectly demonstrates the quality of the learned
data manifold, composed of several object manifolds.

® (i (z) from D;,: Data distribution supported by the
learned manifold is close to the true data distribution.

® Unseen G (z) by sampling z with random seeds.

}  'ﬂﬁi’iu .ﬁ--

X 10 Dypain G(2) X in Dyeg G(z) G(z2)
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I Mapping from Latent Representation Space to Input Space

(Zmix Ymix) = Xmix» Ymix) Visualization
® Generate network: trained styleGAN ® For convex mixup, coefficient & can take a value
® Generate Function:  Xmix = G(Zmix) from the continuous range, [0, 1].
® Dual / Ternary LarepMixup ® For binary mask mixup, coefficient m 1s discrete and

can only be taken from the binary set {0, 1}".

MELTE Wi e
M .Y VS
WETd WEDTT
s S

X X convex mix convex mix mask mix convex mix mask mix
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> Convex Combination

» Binary Mask combination

v Convex mixup: mixed examples show
more smooth mixed characteristics
between source features.

v Binary mask mixup: mixed examples
show fewer transitions between source
features.




I Fine Tuning Vanilla DNN with Mixed Samples and Mixed Labels

Standard Train

® We train the DNN on the original clean trainset

OT'l tra — {(x ytrue)}

® One-hot label-based Cross entropy loss
> One hot coding y,. € {0,1}¢

L(f (%), Yerue) = — l'C=1 yi log(p;)

® Optimization objective

mein IE(x;Y)"’Dori_traL(fg (.’)C, y))

Background Problem Solution

Full Fine Tuning

® We retrain the vanilla DNN on the augmented dataset

Dfin_tun = Dmix Y Dori tra

® Soft label-based cross entropy loss

Lsoft(f(x): Ymix)
= Lsoft(f(x)r a1 yr + o+ agyi)
= a; L(f (x),y1) + -+ + e L(f (%), vk

® Optimization objective

mgin IE(x,y)~Dfin_tunLSOft (f9 (x' y))
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I Experimental Setup

Datasets and Models

® Environment

» PyTorch 1.8.1, CUDA V11.1.74

» NVIDIA GV102 GPU

» Adversarial Robustness Toolbox, advertorch
® Datasct

» CIFAR-10, SVHN

» ImageNet-Mixed10 (a subset of 10 categories)
® Model

» Convolutional block-based: Alexnet and VGG

» Residual block-based: ResNet, DenseNet,
PreActResNet, and WideResNet

» Inception block-based: Googl.eNet

Background Problem

Solution

Baselines

® Attack methods

» Off-manifold attack: FGSM, PGD, AutoAttack,
DeepFool, CW

» On-manifold attack: OM-FGSM, OM-PGD
® Defense methods

» Mixup training methods (5)

» Adversarial training methods (2)

Method Attack Surfaces  Attack Algorithm Augmentation
PGD-AT[36] Off-manifold Known Input Space
PGD-DMAT(35] Off/On-manifold Known Input/Latent Space
InputMixup[56] Off-manifold Unknown Input Space
CutMix[54] Off-manifold Unknown Input Space
PuzzleMixup[29] Off-manifold Unknown Input Space
ManifoldMixup[52] Off-manifold Unknown Latent Space
PatchUp[14] Off-manifold Unknown Latent Space
LarepMixup(Ours)  Off/On-manifold Unknown Latent Space

Page 14 /32
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I Exp 1: Robustness against Different L,, Adversarial Attack Budgets: |16 |p < € and||] |p <n

“* Exp Setup: Off-manifold perturbation § budget € € {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation ¢ budgetn € {0.02,0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

A—x B O
CIFAR-10 SVHN

Accuracy of AlexNet on CIFAR-10 Accuracy of AlexNet on SVHN

=A== Vanilla on PGD

—4A= Vanilla on PGD °
|—*— LarepMixup on PGD) Nﬁr —%= LarepMixup on PGD
\ -m- Vanilla on OM-PGD

=M= Vanilla on OM-PGD ANY A
[-.- LarepMixup on OM-PGD] \:\ * =®= LarepMixup on OM-PGD
e,
\
o N A
\

80

(0]
o

(o))
o

Top-1 Accuracy
=N
o

Top-1 Accuracy
B (o)}
o o
/’.
1, /,
,’/,,/
] Ll
//
// |

] \ I
20 20 ™\ i A\
\\\ o.\\ \:
\\A ".-—--... u \."- \\Q
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0 0.02 0.05 0.1 0.2 0.3 0 0.02 0.05 0.1 0.2 0.3
Budget Budget
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I Exp 1: Robustness against Different L,, Adversarial Attack Budgets: |16 |p < € and||] |p <n

“* Exp Setup: Off-manifold perturbation § budget € € {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation ¢ budgetn € {0.02,0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

® Finding 1: Against PGD and OM-PGD attacks with five strengths, LarepMixup trained AlexNet models always
performs better than standard trained models.

80

Top-1 Accuracy
B ()}
o o

N
o

Background

\A\

CIFAR-10

Accuracy of AlexNet on CIFAR-10

—A= Vanilla on PGD
=k=LarepMixup on PGD
=ml= Vanilla on OM-PGD

*
| -.- LarepMixup on OM-PGD
‘A

b*

Problem

Solution

B (o)) (0]
o o o

Top-1 Accuracy

N
o

Evaluation

A—x B O
SVHN

Accuracy of AlexNet on SVHN

=A= Vanilla on PGD
== LarepMixup on PGD

)
N
I i
\\\ \ -m- Vanilla on OM-PGD
\

o \* -@= LarepMixup on OM-PGD
N\,
A
\‘-\ I

\\\

AT

\ \ e

\
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I Exp 1: Robustness against Different L,, Adversarial Attack Budgets: |16 |p < € and||] |p <n

“* Exp Setup: Off-manifold perturbation § budget € € {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation ¢ budgetn € {0.02,0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

® Finding 2: The model has the best defense against attacks with medium budgets. For PGD and OM-PGD

attacks, the robustness against € = 0.1 and n = 0.05 increase most, respectively.

80
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o o

N
o

Background
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I Exp 1: Robustness against Different L,, Adversarial Attack Budgets: |16 |p < € and||] |p <n

“* Exp Setup: Off-manifold perturbation § budget € € {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation ¢ budgetn € {0.02,0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

® Finding 3: The model after LarepMixup training have very similar accuracy performance on clean examples to
that before training.
A—x B O

CIFAR-10 SVHN
Accuracy of AlexNet on CIFAR-10 Accuracy of AlexNet on SVHN
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Exp 1: Robustness against Different L, Adversarial Attack Budgets:

“* Exp Setup: Off-manifold perturbation § budget € € {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation ¢ budgetn € {0.02,0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

® Finding 4 : On other models (VGG19, ResNet34, DenseNet169, ResNet50, GoogleNet), conclusions from
observations 1/2/3 hold true.

CIFAR-10 SVHN

Accuracy of AlexNet on CIFAR-10 Accuracy of ResNet34 on CIFAR-10 Accuracy of ResNet50 on CIFAR-10 Accuracy of AlexNet on SVHN Accuracy of ResNet34 on SVHN Accuracy of ResNet50 on SVHN
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I Exp 2: Comparison with Existing Mixup Training

¢ Exp Setup: Run six times, mean and standard deviation, 40 epochs, a from Beta(f = (1.0,1.0)), budget 0.05.

® Finding 1: Against off-manifold attacks on CIFAR-10, LarepMixup also perform better than others on robust
accuracy and clean accuracy.

Table 2: Accuracy (%) of CIFAR-10 classification models on off/on-manifold adversarial examples

[ PreActResNetlS]

Method Clean FGSM PGD AutoAttack  DeepFool CW Known Attacker ~Modify Network
Vanilla 87.37+0.00  32.07+0.00 28.93+0.00 7.59+0.00 10.36+0.00 2.60£0.00
InputMixup([56] 84.4811.45 63.5813.36 68.12£3.46  56.63+10.20  37.97+2.58 41.114£2.10 X X
CutMix[54] 82.14£3.00 65.51£1.03 69.6711.34 64.41£3.55 36.791£2.60 39.7413.10 X X
PuzzleMixup[29] 83.11+1.64 65.7312.46 70.35£2.60 64.0326.06 38.86£1.53 41.83+£1.74 X X
ManifoldMixup[52]  71.10+4.17 49.2611.34 52.49£1.91 44.0811.60 25.33£2.76 27.1942.53 X v
PatchUp[14] 72.0214.10 51.351£2.13 55.911£2.29 44.611£2.56 28.81+3.35 30.9413.13 X v
Ours-Convex 84.02£1.77 68.86+2.88 72.65+3.59 66.98+5.93 39.03+2.16 42.03+£2.31 X X
OurS -Mask 84.60£1.27 66.56£1.50 71.22+1.93 63.69t4.61  39.27+2.97 42.54%2.74 X X
PreActResNet34
Method Clean FGSM PGD AutoAttack  DeepFool Ccw Known Attacker Modify Network
Vanilla 83.57+0.00  31.37£0.00 25.71+£0.00 5.27+0.00 12.27+0.00 1.89+0.00
InputMixup[56] 68.42+7.38 62.19+4.22 63.841£4.98 63.79£4.99 26.36+4.07 29.7714.16 X X
CutMix[54] 71.2146.16 62451271 64.61£3.50 64.30£3.16 28.88+2.07 32.1242.38 X X
Convex PuzzleMixup[29] 67.0617.62 60.89+4.99 62.55£5.76 62.66%£5.84 25.89+2.98 28.96+3.37 X X
combination ManifoldMixup[52]  73.69+1.78 49.65+£1.94 52.24+2.08 43.75+£2.04 31.09£3.13 32.81+3.18 X v
. PatchUp[14] 72.71£2.96 49.5311.44 52.761£2.80 42.314£1.80 32.351£3.66 34.10+3.45 X v
Binary Mask
: . Ours-Convex 78.44£1.60 67.81+1.04 71.12+1.08 70.60+1.30 33.98+1.04 37.42+1.03 X X
combination Ours-Mask 77.13+3.17  66.16+158  68.90+1.62  68.40+2.16  32.95+2.26  36.38+2.23 X X
Background Problem Solution Evaluation

For each
column:

champion

runncr up
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I Exp 2: Comparison with Existing Mixup Training

“* Exp Setup: Run six times, mean and standard deviation, 40 epochs, a from Beta(f = (1.0,1.0)), budget 0.05.
None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting.

® Finding 2: Against on-manifold attacks on CIFAR-10, LarepMixup always occupied champions and runners-up.

Table 2: Accuracy (%) of CIFAR-10 classification models on off/on-manifold adversarial examples

| PreActResNet18 |

Method Clean FGSM PGD AutoAttack  DeepFool CW OM-FGSM  OM-PGD | Known Attacker Modify Network

Vanilla 87.37+£0.00  32.07£0.00 28.93+0.00 7.59+0.00 10.36+0.00 2.60£0.00 51.02+0.00 21.68+0.00

InputMixup([56] 84.48+1.45 63.58+3.36 68.12£346  56.63+x10.20 37.97+2.58 41.11+2.10 58.53+0.43 44.11+1.34 X X
CutMix[54] 82.14+3.00 65.51+1.03 69.67+1.54 64.41+£3.55 36.79+2.60 390.74+3.10 57.59+0.31 43.50+1.71 X X
PuzzleMixup[29] 83.11+1.64 65.73+2.46 70.35+2.60 64.03£6.06 38.86+1.53 41.83+1.74 57.80+0.77 43.68+2.19 X X
ManifoldMixup[52]  71.10+4.17 49.26+1.34 52.49+1.91 44.08+1.60 25.33+£2.76 27.19+2.53 50.16+1.66 38.64+0.80 X v
PatchUp[14] 72.02£4.10 51.35+2.13 55.91£2.29 44.61+2.56 28.81+3.35 30.94£3.13 52.22+2.32 41.33+1.24 X v
Ours-Convex 84.02+1.77 68.86%+2.88 72.65%+3.59 66.98+5.93 39.03f£2.16 42.03+£2.31 | 60.02+0.91 46.72+1.52 X X
Ours -Mask 84.60+1.27 66.56+1.50 71.22+1.93 63.69x4.61  39.27+297 42.54+2.74 | 58.36%0.60 44.80+0.73 X X
PreActResNet34

Method Clean FGSM PGD AutoAttack  DeepFool CwW OM-FGSM  OM-PGD | Known Attacker Modify Network

Vanilla 83.57+0.00  31.37£0.00 25.71+0.00 5.27£0.00 12.27+£0.00 1.89+0.00 49.23+0.00 17.05£0.00

InputMixup[56] 68.42+7.38 62.19+4.22 63.84+4.98 63.79£4.99 26.3614.07 29.77+4.16 54.68+3.84 47.18+2.29 X X
CutMix[54] 71.21+6.16 62.45+2.71 64.61+3.50 64.30+£3.16 28.88+2.07 32.12+2.38 55.65+2.56 46.40+0.99 X X
PuzzleMixup[29] 67.06+7.62 60.89+4.99 62.55+5.76 62.66+5.84 25.89+£2.98 28.96+3.37 54.04+3.87 46.31+2.05 X X
ManifoldMixup[52] 73.69+1.78 49.65+1.94 52.24+2.08 43.75+£2.04 31.09+3.13 32.81+3.18 52.99+0.24 39.47+1.34 X v
PatchUp[14] 72.71+£2.96 49.53+1.44 52.76+2.80 42.31+1.80 32.35+3.66 34.10+3.45 53.03+2.37 39.38+1.63 X v
Ours-Convex 78.44£1.60 67.81x1.04 71.12+1.08 70.60+1.30 33.98+1.04 37.42+1.03 | 58.96+0.67 47.99%+1.16 X X
Ours-Mask 77.13+£3.17 66.16+1.58 68.90+1.62 68.40£2.16 32.95+2.26 36.38+2.23 L 58.31+0.96 47.30+1.06 ) X X
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I Exp 2: Comparison with Existing Mixup Training

“* Exp Setup: Run six times, mean and standard deviation, 40 epochs, a from Beta(f = (1.0,1.0)), budget 0.05.
None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting.

® Finding 3: On SVHN, LarepMixup most frequently occupied champions and runners-up.

| PreActResNet18 |

Table 3: Accuracy (%) of SVHN classification models on off/on-manifold adversarial examples

Method Clean FGSM PGD AutoAttack DeepFool cw OM-FGSM OM-PGD  Known Attacker Modify Network

Vanilla 95.97+0.00  57.29+0.00 34.5710.00 29.2140.00 22.5140.00 21.54%0.00 41.0410.00 6.78+0.00

InputMixup[56] 94.39+0.79 68.77+2.03 58.81+£2.34 51.25+2.22 60.50+3.33 64.42+2.16 44 .58+0.86 18.48+1.04 X X
CutMix[54] 94.19+1.07 68.78+2.01 59.52+3.28 52.50+3.64 57.45+43.26 63.62+1.52 44.31+1.02 17.87+£0.91 X X
PuzzleMixup[29] 94.54+0.66 67.55+1.79 58.79+£3.34 51.65+3.48 55.87+2.22 63.42+1.51 43.6310.62 16.00£1.15 X X
ManifoldMixup[52]  89.15+4.22 67.21+1.85 60.32£1.94 53.60£3.21 52.9513.15 60.57£1.97 43.32+1.52  22.19+2.01 X v
PatchUp[14] 89.87+1.78 66.44+0.78 58.96£1.90 52.3612.82 54.6812.69 61.54+1.68 43.401£0.91 21.51£1.05 X v
Ours-Convex 94.38+0.61 70.62+1.35 63.35+0.67 56.66+1.22 58.14+0.75 64.45+0.54  45.24+0.44 19.59+0.57 X X
Ours-Mask 94.42+0.93 70.22+1.30 60.02+1.72 53.34+2.02 57.98+2.44 64.36+1.08  45.26+#0.54  19.90x0.71 X X

| PreActResNet34 |
Method Clean FGSM PGD AutoAttack  DeepFool CW OM-FGSM  OM-PGD  Known Attacker Modify Network

Vanilla 95.75+0.00  57.11+0.00 35.57+0.00 29.80+0.00 19.94+0.00 25.62%0.00 36.6210.00 5.01+0.00

InputMixup[56] 93.41+1.85 66.14+0.85 60.42+6.52 52.82+7.44 49.76+3.32 62.47+1.10 39.97+0.97 17.07£0.85 X X
CutMix[54] 93.3612.74 65.7110.56 60.09+7.25 53.3918.66 49.2612.00 61.83£1.35 39.81£1.09 16.252£0.88 X X
PuzzleMixup[29] 92.53+4.79 65.1210.82 61.06£7.05 54.17+8.54 48.6513.22 61.63£2.37 39.2411.89 15.89£2.15 X X
ManifoldMixup[52]  81.27+2.68 61.63£2.07 63.61+£3.10 59.19+1.94 44 8814.40 56.291£3.92 36.114£1.07 21.6811.26 X v
PatchUp[14] 68.39+9.86 51.94+4 91 55.01+6.31 52.17+£591 36.07+2.41 47.47+45.47 31.81+2.20  22.19+2.72 X v
Ours-Convex 94.94+0.31 68.37+0.76  61.75+3.65 53.55+4.05 52.21+1.67 64.61+1.27 41.13+0.41 16.88+0.38 X X
Ours-Mask 93.63+1.13 67.69+0.52 63.21£5.39 55.74+5.69 52.10+2.75 64.27£1.30 40.70£0.60 17.01£0.47 X X
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I Exp 3: Comparison with Existing Adversarial Training

“* Exp Setup: budget e = 0.05, single step budget is 0.02. budget n = 0.05, single step budget is 0.005. The
number of augmented adversarial examples is the same as the number of augmented mixed examples.

® There 1s a strong assumption in AT, that is, the defender needs to construct adversarial examples during the
training phase.

PreActResNets on PGD CIFAR-10 PreActResNets on PGD SVHN
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I Exp 3: Comparison with Existing Adversarial Training

“* Exp Setup: budget e = 0.05, single step budget is 0.02. budget n = 0.05, single step budget is 0.005. The
number of augmented adversarial examples is the same as the number of augmented mixed examples.

® Finding 1: Against PGD on CIFAR-10, LarepMixup are better than AT and DMAT 1n both aspects.
® Finding 2: Against PGD on SVHN, LarepMixup outperforms in clean accuracy.
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I Exp 3: Comparison with Existing Adversarial Training

“* Exp Setup: budget e = 0.05, single step budget is 0.02. budget n = 0.05, single step budget is 0.005. The

number of augmented adversarial examples is the same as the number of augmented mixed examples.
® Finding 3: Against OM-PGD on CIFAR-10 and SVHN, conclusions from observation 1/2 hold true.
® Finding 4: Robustness advantage between PGD-AT and PGD-DMAT is reversed.
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Exp 3: Comparison with Existing Adversarial Training

“* Exp Setup: budget e = 0.05, single step budget is 0.02. budget n = 0.05, single step budget is 0.005. The
number of augmented adversarial examples is the same as the number of augmented mixed examples.

® Finding 5: On other attacks (FGSM, OM-FGSM, DeepFool, CW), previous conclusions hold true.

® Finding 6: PGD-AT and PGD-DMAT have decreased robustness improvement against non-PGD related attacks.
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I Exp 4: Robustness against Non-L,, Constrained Perturbations

s Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.

® Simulate natural environmental noise, compression distortion, etc.
CIFAR-10
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I Exp 4: Robustness against Non-L,, Constrained Perturbations

s Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
® Finding 1: The robust accuracy of AlexNet against perceptual attacks shows significant increase.

® Finding 2: The clean accuracy of AlexNet 1s not much different before and after LarepMixup training.
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Exp 4: Robustness against Non-L,, Constrained Perturbations

s Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.

® Finding 3: On other models (VGG19, ResNet34, DenseNet1 69, ResNet50, GoogleNet), conclusions from
observation 1/2 hold true.
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I Exp 5: Effect of Mixing Modes

“* Exp Setup: High dimensional ImageNet-Mixed 10 (256 X 256 pixels). Run three times and take average.
® Finding 1: For off-manifold attacks, the robustness improvement from four mixing modes 1s not much different.

® Finding 2: For on-manifold attacks, the advantage of convex mixing is obvisious. For source samples on the
same object manifold, linear combination is more likely to produce interpolation points lying on the manifold.

® Finding 3: There 1s little difference in accuracy improvement in terms of the number of mixed source samples.

Table 4: Robust accuracy (%) of PreActResNet18 under differ-
ent mixing modes (ImageNet-Mixed10)

) Dual-LarepMixu Ternary-LarepMixu
Method Vanilla Convex P Maﬁk Conv;?:xary pMasl{p
Clean 90.47  90.57+0.55 90.89+0.35 90.67+0.21  90.24+1.25
~ FGSM 13.93 17.09+0.29  16.21+0.14  16.71+0.34  17.29+0.94
PGD 2.00 5.38+0.81 4.68+0.45 473+0.69  5.81+1.32
off-manifold -  AutoAttack  0.00 3.74+0.19 3.68+0.29 3.60+0.18 3.66+0.04
DeepFool 8.87 85.38+0.19  83.98+0.42  84.89+0.18  83.93+1.00
CW 0.10 84.61+0.30  83.16%0.52  84.19+0.47  83.28+0.62
: { OM-FGSM 26.90  59.91+1.30  28.61+5.58 57.36+1.89  28.21+0.98
on-manifold OM-PGD 2043  58.76+1.30 27.99+592  56.59+1.87  27.47+1.44
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I Summary

® We propose LarepMixup, a mixup-based training framework towards addressing the threats from off/on-
manifold adversarial attacks at the same time.

® We design a flexible data augmentation strategy, dual-mode manifold interpolation, for generating mixed
examples using convex or binary mask mixing modes.

® To our knowledge, we are the first to focus on the performance of the mixup trainied model on on-
manifold L,, attacks and off-manifold non-L,, attacks.

I Future Work

® While mixup training was originally proposed for image classification tasks, it can be extended to other
input domains, such as natural language processing, network intrusion detection.
» Text Classification
» Network Traffic Classification

® Help improve DNN’s capability to handle variations in language syntax or traffic patterns and increases
the model’s robustness to unseen adversarial evasion attacks.
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