
Boost Off/On-Manifold Adversarial Robustness for 
Deep Learning with Latent Representation Mixup

The 18th ACM ASIA Conference on Computer and Communications Security (ACM ASIACCS 2023)

Mengdie Huang1, Yi Xie1, Xiaofeng Chen1, Jin Li2, Changyu Dong3, Zheli Liu4, Willy Susilo5

1 Xidian University
2 Guangzhou University
3 Newcastle University

4 Nankai University
5 University of Wollongong



Overview

Background

Problem

Solution

Evaluation

Conclusion

Contents Keywords
Deep 

Neural 
Network

Off-
manifold

Adversarial 
Attack

On-
manifold

Adversarial 
Attack

Representati
on Learning

Mixup
Training

Adversarial 
Robustness



Background Problem Solution Evaluation Conclusion Page   1 / 32

Practical Case - Auto Driving

 Traffic sign must be read correctly

 Normal looking Stop sign can be ignored

Transform DNN Response

Autopilot action: Stop Autopilot action: Speed limit
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Threats to Deep Neural Networks (DNNs)

 Adversarial Example

Clean Input

Clean Input Perturbation Adversarial Input

+ =

Stop

97.99%

Speed Limit

99.53%

Deployed Model

Deployed Model



 Aka: 
 Regular adversarial attack
 Input-space adversarial attack
 Pixel-space adversarial attack

 Optimization objective

 FGSM, PGD, JSMA, DeepFool, CW, AutoAttack
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𝑳𝑳𝒑𝒑 Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack

max
𝛿𝛿 𝑝𝑝≤𝜖𝜖

ℒ(𝐹𝐹𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝑥𝑥 𝐹𝐹𝜃𝜃

𝛿𝛿

𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦4
𝛿𝛿 𝑝𝑝 ≤ 𝜖𝜖 d1

d3

d2

Object Manifold of  '3'

Object Manifold of  '8'

Decision Line / Hyperplane

Decision Curve / Hypersurface

Input space: 28x28 pixels728 dimensions

Object (Class) Manifold



 Aka: 
 Regular adversarial attack
 Input-space adversarial attack
 Pixel-space adversarial attack

 Optimization objective

 FGSM, PGD, JSMA, DeepFool, CW, AutoAttack
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𝑳𝑳𝒑𝒑 Threats to Deep Neural Networks (DNNs)

 Aka: 
 latent-space adversarial attack

 Optimization objective

 OM-FGSM, OM-PGD

max
𝛿𝛿 𝑝𝑝≤𝜖𝜖

ℒ(𝐹𝐹𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max
𝜁𝜁 𝑝𝑝≤𝜂𝜂

ℒ(𝐹𝐹𝜃𝜃 𝐺𝐺𝜑𝜑(𝑧𝑧 + 𝜁𝜁) ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝑥𝑥 𝐹𝐹𝜃𝜃

𝛿𝛿

𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦4
𝛿𝛿 𝑝𝑝 ≤ 𝜖𝜖

𝑥𝑥 𝐹𝐹𝜃𝜃

𝜁𝜁

𝑦𝑦1 𝑦𝑦2 𝑦𝑦3 𝑦𝑦4

𝐺𝐺𝜑𝜑−1 𝑧𝑧

𝜁𝜁 𝑝𝑝 ≤ 𝜂𝜂

𝐺𝐺𝜑𝜑−1

Off-manifold Adversarial (Example) Attack On-manifold Adversarial (Example) Attack
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𝑳𝑳𝒑𝒑 Threats to Deep Neural Networks (DNNs)

 Aka: 
 Regular adversarial attack
 Input-space adversarial attack
 Pixel-space adversarial attack

 Optimization objective

 Aka: 
 latent-space adversarial attack

 Optimization objective

Clean 𝜖𝜖=0.02 𝜖𝜖=0.05 𝜖𝜖=0.1 𝜖𝜖=0.2 𝜖𝜖=0.3 Clean 𝜂𝜂=0.02 𝜂𝜂=0.05 𝜂𝜂=0.1 𝜂𝜂=0.2 𝜂𝜂=0.3

max
𝛿𝛿 𝑝𝑝≤𝜖𝜖

ℒ(𝐹𝐹𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max
𝜁𝜁 𝑝𝑝≤𝜂𝜂

ℒ(𝐹𝐹𝜃𝜃 𝐺𝐺𝜑𝜑(𝑧𝑧 + 𝜁𝜁) ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

PGD 
CIFAR-10

OM-PGD 
CIFAR-10

Off-manifold Adversarial (Example) Attack On-manifold Adversarial (Example) Attack
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𝑳𝑳𝒑𝒑 Threats to Deep Neural Networks (DNNs)

 Aka: 
 Regular adversarial attack
 Input-space adversarial attack
 Pixel-space adversarial attack

 Optimization objective

 Aka: 
 latent-space adversarial attack

 Optimization objective

Clean 𝜖𝜖=0.02 𝜖𝜖=0.05 𝜖𝜖=0.1 𝜖𝜖=0.2 𝜖𝜖=0.3 Clean 𝜂𝜂=0.02 𝜂𝜂=0.05 𝜂𝜂=0.1 𝜂𝜂=0.2 𝜂𝜂=0.3

max
𝛿𝛿 𝑝𝑝≤𝜖𝜖

ℒ(𝐹𝐹𝜃𝜃 𝑥𝑥 + 𝛿𝛿 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

max
𝜁𝜁 𝑝𝑝≤𝜂𝜂

ℒ(𝐹𝐹𝜃𝜃 𝐺𝐺𝜑𝜑(𝑧𝑧 + 𝜁𝜁) ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

Invalid 
OM-PGD

PGD 
SVHN

OM-PGD 
SVHN

Off-manifold Adversarial (Example) Attack On-manifold Adversarial (Example) Attack
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Defense Methods Focused on Improving Adversarial Robustness of DNN

 Adversarial Training (AT): 
 Input-space AT

• FGSM-AT
• PGD-AT

 Mixup Training: 
 Input-space Mixup

• InputMixup
• CutMix
• PuzzleMixup

 Hidden-space Mixup
• ManifoldMixup
• PatchUp

Against Off-manifold Adversarial Attack

 On-Manifold Adversarial Training (OMAT): 
 Latent-space AT

• Dual Manifold-AT (DMAT)
• FGSM-AT + OM-FGSM-AT
• PGD-AT + OM-PGD-AT

Against On-manifold Adversarial Attack

Standard Training Adversarial Training Mixup Training

(𝑥𝑥 + 𝛿𝛿,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

(𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2,𝛼𝛼𝑦𝑦1 + 1 − 𝛼𝛼 𝑦𝑦2)

(𝐺𝐺𝜑𝜑(𝑧𝑧 + 𝜁𝜁),𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
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Improve Off/On-Manifold Adversarial Robustness

 Issue 1:
 AT defenses require the defender to have some knowledge of the attack in advance, so that the defender can

actively generate adversarial examples for training.

 Issue 2:
 All of existing Mixup defenses focused on improving robustness to off-manifold adversarial attacks but ignores

on-manifold adversarial attacks and non-𝐿𝐿𝑝𝑝 attacks.

 Problem to be solved:
 Assume the attack knowledge is completely unknown, defender try to enhance the robustness against the off-

manifold and on-manifold adversarial attacks at the same time.

 Idea:
 Construct interpolation samples in the latent space where embedded with the approximately
exact manifold.

• Off-manifold interpolation points off-manifold robustness
• On-manifold interpolation points on-manifold robustness

 Use the mixed label to supervise the learning, so that the model is encouraged to assign class probabilities
based on the interpolated proportion.

d1

d3

d2
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Framework of Proposed LarepMixup Training

G

xmixzmix Generate

Classify

...

F

ymix

α m

Fconvex Fmask

G-1

G-1

xi

xj

zi

zj

...
...

Project

Project

yi

yj

Mixup 
Function

Low-dimensional Manifold Embedding Latent Representation Mixup Softlabel-based Training
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Proposed Multi-mode Manifold Interpolation Strategy

 Mixed Sample
 Mixed Label
 Coefficient vector

 Case 𝑘𝑘 = 2, sample 𝛼𝛼 from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽).
 Case 𝑘𝑘 > 2, sample 𝛼𝛼 from 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝛾𝛾).

 Mixed Sample
 Mixed Label
 Coefficient vector

 Case 𝑘𝑘 = 2, sample 𝑚𝑚1 from 𝑛𝑛-fold 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝), 𝑛𝑛 is the dimension of 𝑧𝑧.

 Case 𝑘𝑘 > 2, sample 𝑚𝑚2 from 𝑞𝑞-fold 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝), 𝑞𝑞 is the number of non-zero 
elements in the vector 1𝐵𝐵 − 𝑚𝑚1.

 Sample 𝑝𝑝 from 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0,1).

Convex Combination-based Interpolation Binary Mask Combination-based Interpolation

d1

d3

d2O
Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

Zi

d1

d3

d2

Zi

O
Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼1𝑧𝑧1 + ⋯+ 𝛼𝛼𝑘𝑘𝑧𝑧𝑘𝑘
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼1𝑦𝑦1 + ⋯+ 𝛼𝛼𝑘𝑘𝑦𝑦𝑘𝑘

𝛼𝛼 ∈ 𝐴𝐴 ≔ {𝑅𝑅𝑘𝑘 ,𝛼𝛼𝑖𝑖 ∈ 0,1 ,∑𝑖𝑖=0𝑘𝑘 𝛼𝛼𝑖𝑖 = 1} 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚1𝑧𝑧1⨀…⨀𝑚𝑚𝑘𝑘𝑧𝑧𝑘𝑘
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆1𝑦𝑦1 + ⋯+ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘

𝑚𝑚𝑖𝑖 ∈ 𝐵𝐵 ≔ 0,1 𝑛𝑛,∑𝑖𝑖=0𝑘𝑘 𝑚𝑚𝑖𝑖 = 1𝐵𝐵 

λ𝑖𝑖 =
𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑖𝑖=1

𝑛𝑛
  



Background Problem Solution Evaluation Conclusion Page 11 / 32

Embedding from Input Space to Latent Representation Space

(𝒙𝒙,𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) → (𝒛𝒛,𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

 Embedding network:  trained styleGAN
 Embedding algorithm:

 Sample 𝑤𝑤 randomly from 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1)
 𝑡𝑡 = 0
 𝑧𝑧𝑡𝑡 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤)
 While 𝑡𝑡 < 𝑇𝑇 do

• 𝐺𝐺 𝑧𝑧𝑡𝑡
• 𝑧𝑧𝑡𝑡+1 = 𝑧𝑧𝑡𝑡 − 𝜂𝜂(∇𝑧𝑧𝑡𝑡𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺 𝑧𝑧𝑡𝑡 , 𝑥𝑥))
• 𝑡𝑡 = 𝑡𝑡 + 1

 End While
 𝑧𝑧 = 𝑧𝑧𝑡𝑡

 Indirectly demonstrates the quality of the learned 
data manifold, composed of several object manifolds.

 𝐺𝐺(𝑧𝑧) from 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: Data distribution supported by the 
learned manifold is close to the true data distribution.

 Unseen 𝐺𝐺(𝑧𝑧) by sampling 𝑧𝑧 with random seeds.

Visualization

x in Dtrain G(z) x in Dtest G(z) G(z)
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Embedding from Input Space to Latent Representation Space
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Visualization

x in Dtrain G(z) x in Dtest G(z) G(z)x in Dtrain G(z) x in Dtest G(z) G(z)
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Mapping from Latent Representation Space to Input Space

 Generate network:  trained styleGAN
 Generate Function:
 Dual / Ternary LarepMixup

 Convex Combination
 Binary Mask combination

(𝒛𝒛𝒎𝒎𝒎𝒎𝒎𝒎,𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎) → (𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎,𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎)

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐺𝐺(𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚)
 For convex mixup, coefficient 𝛼𝛼 can take a value 

from the continuous range, [0, 1].
 For binary mask mixup, coefficient 𝑚𝑚 is discrete and 

can only be taken from the binary set 0, 1 𝑛𝑛.

xi xj convex mix mask mix xj xk convex mix mask mixxixi xj convex mix    

Visualization

 Convex mixup: mixed examples show 
more smooth mixed characteristics 
between source features. 

 Binary mask mixup: mixed examples 
show fewer transitions between source 
features.
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Fine Tuning Vanilla DNN with Mixed Samples and Mixed Labels

 We train the DNN on the original clean trainset

 One-hot label-based Cross entropy loss
 One hot coding 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈ 0,1 𝐶𝐶

 Optimization objective

Standard Train

 We retrain the vanilla DNN on the augmented dataset

 Soft label-based cross entropy loss

 Optimization objective

Full Fine Tuning

𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓_𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 ∪ 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜_𝑡𝑡𝑡𝑡𝑡𝑡

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓 𝑥𝑥 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
= 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓 𝑥𝑥 ,𝛼𝛼1𝑦𝑦1 + ⋯+ 𝛼𝛼𝑘𝑘𝑦𝑦𝑘𝑘
= 𝛼𝛼1𝐿𝐿 𝑓𝑓 𝑥𝑥 ,𝑦𝑦1 + ⋯+ 𝛼𝛼𝑘𝑘𝐿𝐿(𝑓𝑓 𝑥𝑥 ,𝑦𝑦𝑘𝑘)

min
𝜃𝜃
𝔼𝔼 𝑥𝑥,𝑦𝑦 ~𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓_𝑡𝑡𝑡𝑡𝑡𝑡𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝜃𝜃(𝑥𝑥,𝑦𝑦))

𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜_𝑡𝑡𝑡𝑡𝑡𝑡 = {(𝑥𝑥,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)}

𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −∑𝑖𝑖=1𝐶𝐶 𝑦𝑦𝑖𝑖 log(𝑝𝑝𝑖𝑖) 

min
𝜃𝜃
𝔼𝔼 𝑥𝑥,𝑦𝑦 ~𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜_𝑡𝑡𝑡𝑡𝑡𝑡𝐿𝐿(𝑓𝑓𝜃𝜃(𝑥𝑥,𝑦𝑦))
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Experimental Setup

 Environment
 PyTorch 1.8.1, CUDA V11.1.74
 NVIDIA GV102 GPU
 Adversarial Robustness Toolbox, advertorch

 Dataset
 CIFAR-10, SVHN
 ImageNet-Mixed10 (a subset of 10 categories)

 Model
 Convolutional block-based: Alexnet and VGG
 Residual block-based: ResNet, DenseNet, 

PreActResNet, and WideResNet
 Inception block-based: GoogLeNet

 Attack methods
 Off-manifold attack: FGSM, PGD, AutoAttack, 

DeepFool, CW
 On-manifold attack: OM-FGSM, OM-PGD

 Defense methods
 Mixup training methods (5)
 Adversarial training methods (2)

Datasets and Models Baselines
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Exp 1: Robustness against Different 𝑳𝑳𝒑𝒑 Adversarial Attack Budgets: 𝜹𝜹 𝒑𝒑 ≤ 𝝐𝝐 and 𝜻𝜻 𝒑𝒑 ≤ 𝜼𝜼

 Exp Setup: Off-manifold perturbation 𝛿𝛿 budget ϵ ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation 𝜁𝜁 budget 𝜂𝜂 ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

CIFAR-10 SVHN
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 Exp Setup: Off-manifold perturbation 𝛿𝛿 budget ϵ ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation 𝜁𝜁 budget 𝜂𝜂 ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

 Finding 1: Against PGD and OM-PGD attacks with five strengths, LarepMixup trained AlexNet models always 
performs better than standard trained models. 

CIFAR-10 SVHN
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 Exp Setup: Off-manifold perturbation 𝛿𝛿 budget ϵ ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation 𝜁𝜁 budget 𝜂𝜂 ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

 Finding 2: The model has the best defense against attacks with medium budgets. For PGD and OM-PGD 
attacks, the robustness against 𝜖𝜖 = 0.1 and 𝜂𝜂 = 0.05 increase most, respectively.
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 Exp Setup: Off-manifold perturbation 𝛿𝛿 budget ϵ ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation 𝜁𝜁 budget 𝜂𝜂 ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

 Finding 3:  The model after LarepMixup training have very similar accuracy performance on clean examples to 
that before training.
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CIFAR-10 SVHN

 Exp Setup: Off-manifold perturbation 𝛿𝛿 budget ϵ ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.02. On-
manifold perturbation 𝜁𝜁 budget 𝜂𝜂 ∈ {0.02, 0.05, 0.1, 0.2, 0.3}, single step budget is 0.005.

 Finding 4 : On other models (VGG19, ResNet34, DenseNet169, ResNet50, GoogleNet), conclusions from 
observations 1/2/3 hold true.

Exp 1: Robustness against Different 𝑳𝑳𝒑𝒑 Adversarial Attack Budgets: 𝜹𝜹 𝒑𝒑 ≤ 𝝐𝝐 and 𝜻𝜻 𝒑𝒑 ≤ 𝜼𝜼
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Exp 2: Comparison with Existing Mixup Training

 Exp Setup: Run six times, mean and standard deviation, 40 epochs, 𝛼𝛼 from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽 = (1.0,1.0)), budget 0.05. 
 Finding 1: Against off-manifold attacks on CIFAR-10, LarepMixup also perform better than others on robust 

accuracy and clean accuracy.
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combination
Binary Mask 
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 Exp Setup: Run six times, mean and standard deviation, 40 epochs, 𝛼𝛼 from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽 = (1.0,1.0)), budget 0.05. 
None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting. 

 Finding 2: Against on-manifold attacks on CIFAR-10, LarepMixup always occupied champions and runners-up.

For each 
column: 

champion
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 Exp Setup: Run six times, mean and standard deviation, 40 epochs, 𝛼𝛼 from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛽𝛽 = (1.0,1.0)), budget 0.05. 
None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting. 

 Finding 3: On SVHN, LarepMixup most frequently occupied champions and runners-up. 

For each 
column: 

champion
runner up

Exp 2: Comparison with Existing Mixup Training
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 Exp Setup: budget ϵ = 0.05, single step budget is 0.02. budget 𝜂𝜂 = 0.05, single step budget is 0.005. The 
number of augmented adversarial examples is the same as the number of augmented mixed examples.

 There is a strong assumption in AT, that is, the defender needs to construct adversarial examples during the 
training phase. 

CIFAR-10 SVHN

Exp 3: Comparison with Existing Adversarial Training
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 Exp Setup: budget ϵ = 0.05, single step budget is 0.02. budget 𝜂𝜂 = 0.05, single step budget is 0.005. The 
number of augmented adversarial examples is the same as the number of augmented mixed examples.

 Finding 1: Against PGD on CIFAR-10, LarepMixup are better than AT and DMAT in both aspects. 
 Finding 2: Against PGD on SVHN, LarepMixup outperforms in clean accuracy.

CIFAR-10 SVHN

 larger 𝑥𝑥-axis means higher 
clean accuracy

 larger 𝑦𝑦-axis means higher 
adversarial accuracy

 The same color is a group of 
comparison results.
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 Exp Setup: budget ϵ = 0.05, single step budget is 0.02. budget 𝜂𝜂 = 0.05, single step budget is 0.005. The 
number of augmented adversarial examples is the same as the number of augmented mixed examples.

 Finding 3: Against OM-PGD on CIFAR-10 and SVHN, conclusions from observation 1/2 hold true. 
 Finding 4: Robustness advantage between PGD-AT and PGD-DMAT is reversed.

CIFAR-10 SVHN

 Right points mean better 
accuracy on clean 
examples. 

 Higher points mean better 
accuracy on adversarial 
examples.

 The same color is a group 
of comparison results.
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 Exp Setup: budget ϵ = 0.05, single step budget is 0.02. budget 𝜂𝜂 = 0.05, single step budget is 0.005. The 
number of augmented adversarial examples is the same as the number of augmented mixed examples.

 Finding 5: On other attacks (FGSM, OM-FGSM, DeepFool, CW), previous conclusions hold true.
 Finding 6: PGD-AT and PGD-DMAT have decreased robustness improvement against non-PGD related attacks.

CIFAR-10 SVHN

Exp 3: Comparison with Existing Adversarial Training
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Exp 4: Robustness against Non-𝑳𝑳𝒑𝒑 Constrained Perturbations

 Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
 Simulate natural environmental noise, compression distortion, etc.

CIFAR-10
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 Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
 Finding 1: The robust accuracy of AlexNet against perceptual attacks shows significant increase.
 Finding 2: The clean accuracy of AlexNet is not much different before and after LarepMixup training.

CIFAR-10 SVHN
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 Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
 Finding 3: On other models (VGG19, ResNet34, DenseNet169, ResNet50, GoogleNet), conclusions from 

observation 1/2 hold true.
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 Exp Setup: High dimensional ImageNet-Mixed 10 (256 × 256 pixels). Run three times and take average.
 Finding 1: For off-manifold attacks, the robustness improvement from four mixing modes is not much different. 
 Finding 2: For on-manifold attacks, the advantage of convex mixing is obvisious. For source samples on the 

same object manifold, linear combination is more likely to produce interpolation points lying on the manifold.
 Finding 3: There is little difference in accuracy improvement in terms of the number of mixed source samples.

off-manifold

on-manifold

Exp 5: Effect of Mixing Modes
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Summary

 We propose LarepMixup, a mixup-based training framework towards addressing the threats from off/on-
manifold adversarial attacks at the same time.

 We design a flexible data augmentation strategy, dual-mode manifold interpolation, for generating mixed
examples using convex or binary mask mixing modes.

 To our knowledge, we are the first to focus on the performance of the mixup trainied model on on-
manifold 𝐿𝐿𝑝𝑝 attacks and off-manifold non-𝐿𝐿𝑝𝑝 attacks.

Future Work

 While mixup training was originally proposed for image classification tasks, it can be extended to other 
input domains, such as natural language processing, network intrusion detection.
 Text Classification
 Network Traffic Classification

 Help improve DNN’s capability to handle variations in language syntax or traffic patterns and increases 
the model’s robustness to unseen adversarial evasion attacks.
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