

Boost Off/On-Manifold Adversarial Robustness for Deep Learning with Latent Representation Mixup

Mengdie Huang¹, Yi Xie¹, Xiaofeng Chen¹, Jin Li², Changyu Dong³, Zheli Liu⁴, Willy Susilo⁵

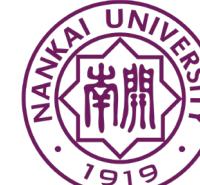
¹ Xidian University

² Guangzhou University

³ Newcastle University

⁴ Nankai University

⁵ University of Wollongong

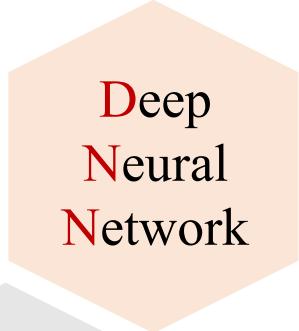


Overview

Contents

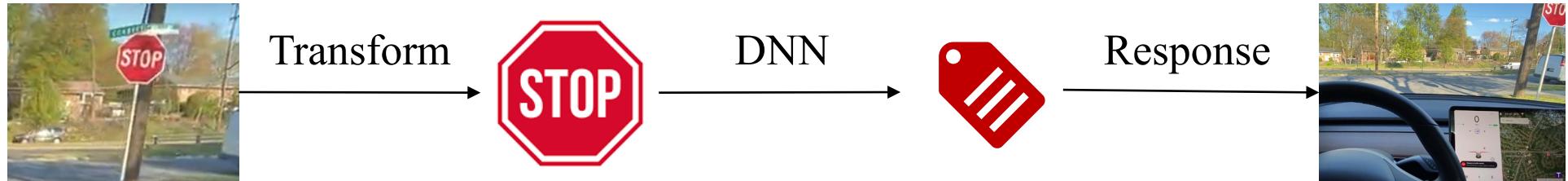
- Background
- Problem
- Solution
- Evaluation
- Conclusion

Keywords

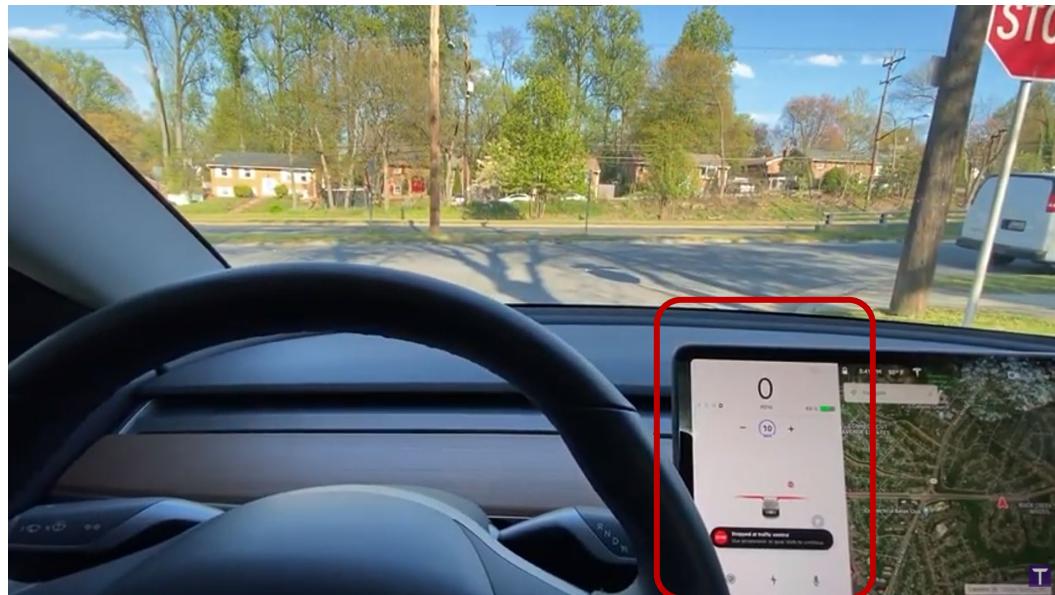
-  Deep Neural Network
- On-manifold Adversarial Attack
- Adversarial Robustness
- Off-manifold Adversarial Attack
- Mixup Training
-  Representation Learning

Practical Case - Auto Driving

- Traffic sign must be read correctly



- Normal looking Stop sign can be ignored



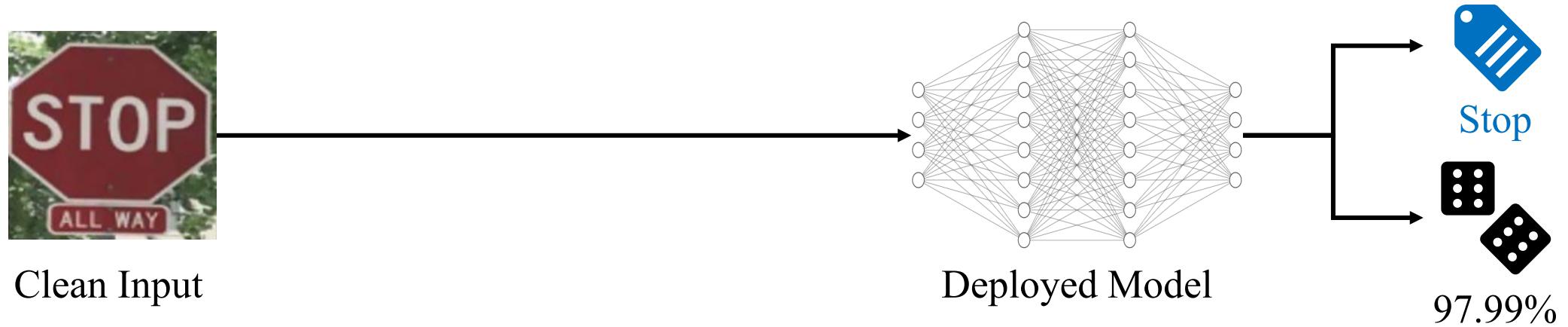
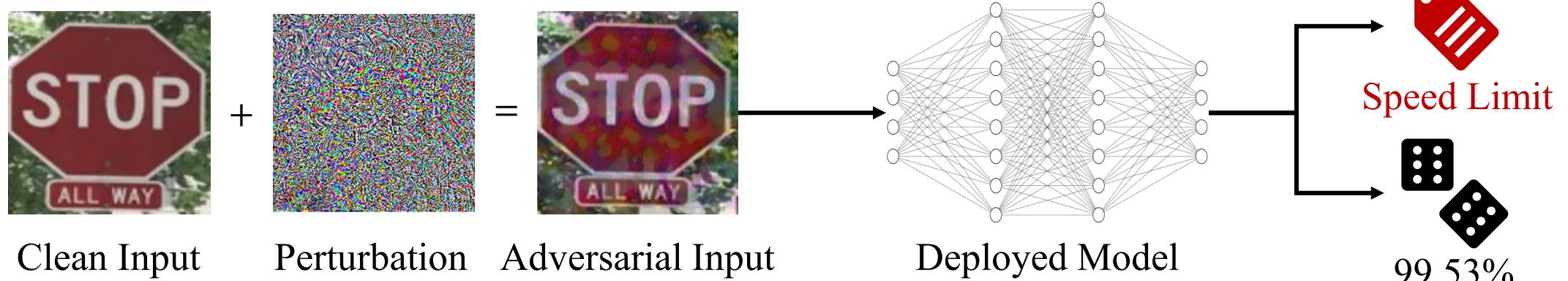
Autopilot action: Stop



Autopilot action: Speed limit

Threats to Deep Neural Networks (DNNs)

- Adversarial Example

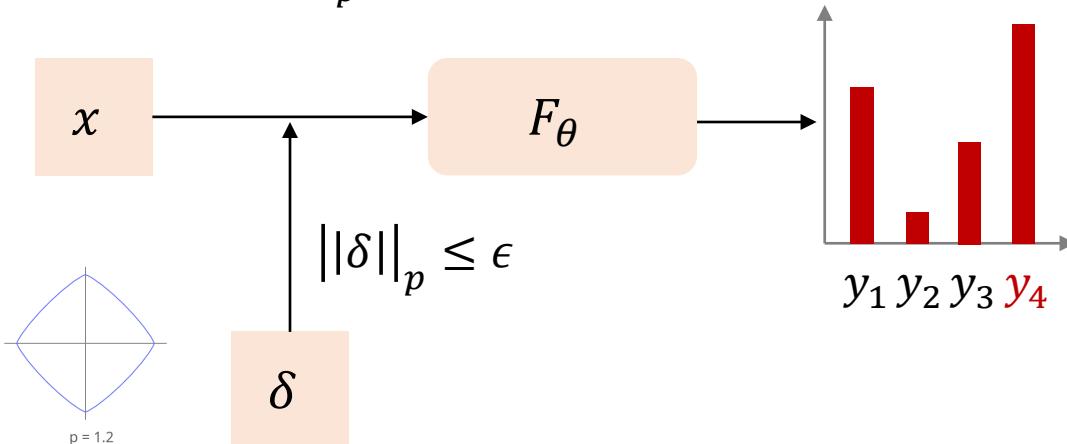


L_p Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack

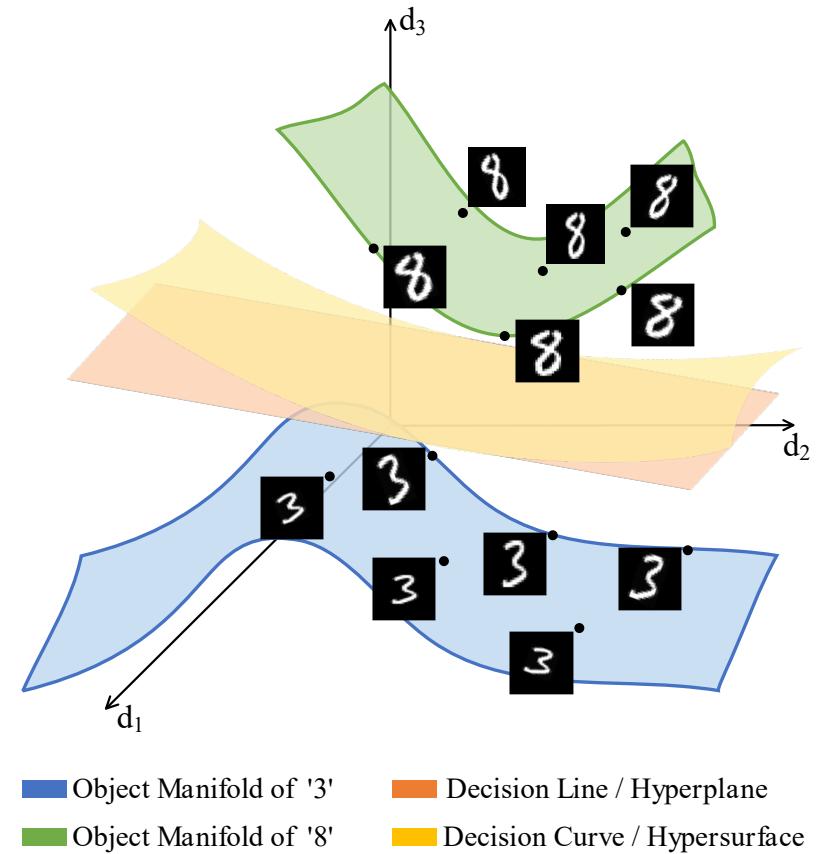
- Aka:
 - Regular adversarial attack
 - Input-space adversarial attack
 - Pixel-space adversarial attack
- Optimization objective

$$\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(F_\theta(x + \delta), y_{true})$$



- FGSM, PGD, JSMA, DeepFool, CW, AutoAttack

Object (Class) Manifold

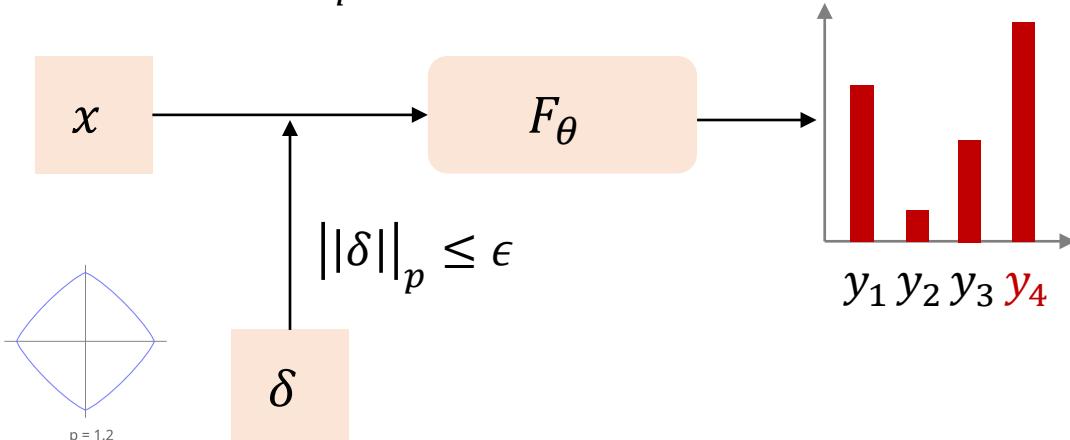


Input space: 28x28 pixels \rightarrow 728 dimensions

Off-manifold Adversarial (Example) Attack

- Aka:
 - Regular adversarial attack
 - Input-space adversarial attack
 - Pixel-space adversarial attack
- Optimization objective

$$\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(F_\theta(x + \delta), y_{true})$$

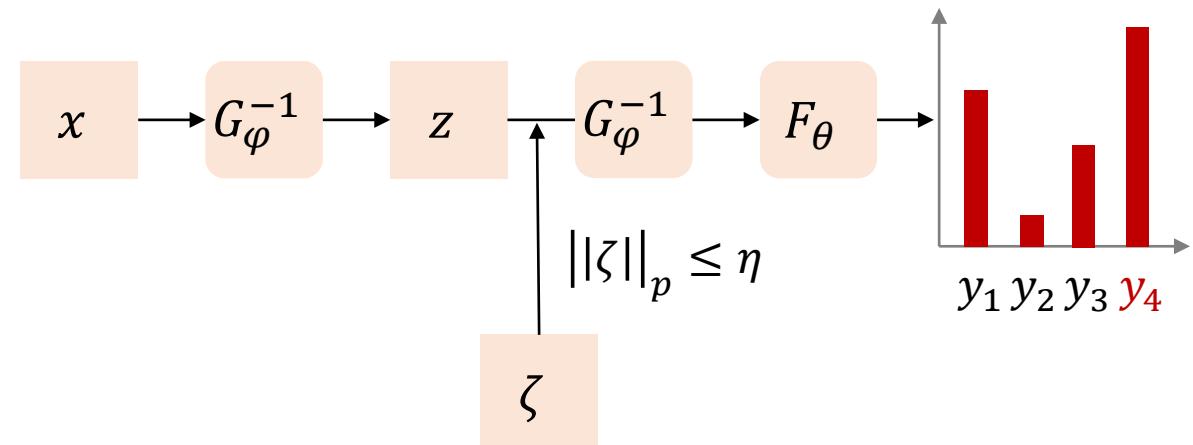


- FGSM, PGD, JSMA, DeepFool, CW, AutoAttack

On-manifold Adversarial (Example) Attack

- Aka:
 - latent-space adversarial attack
- Optimization objective

$$\max_{\|\zeta\|_p \leq \eta} \mathcal{L}(F_\theta(G_\varphi(z + \zeta)), y_{true})$$

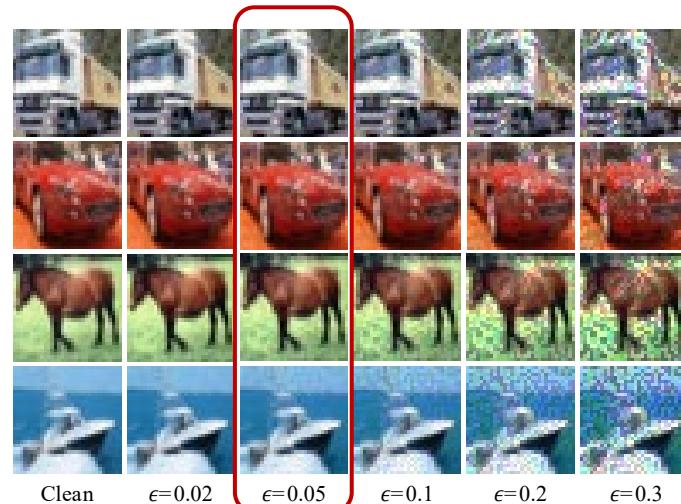


- OM-FGSM, OM-PGD

Off-manifold Adversarial (Example) Attack

- Aka:
 - Regular adversarial attack
 - Input-space adversarial attack
 - Pixel-space adversarial attack
- Optimization objective

$$\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(F_\theta(x + \delta), y_{true})$$

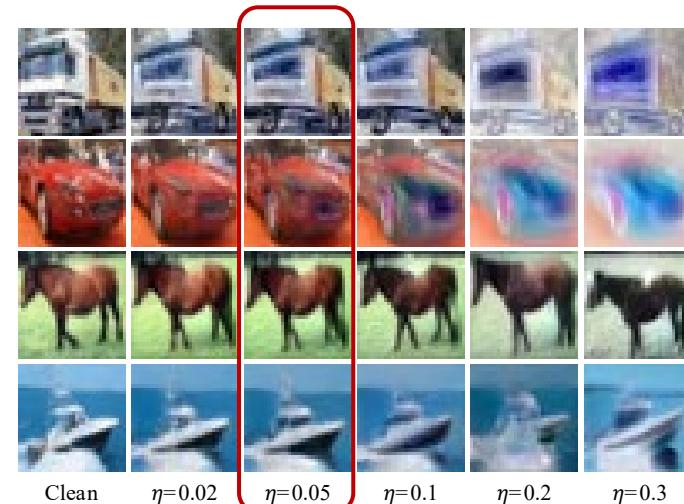


PGD
CIFAR-10

On-manifold Adversarial (Example) Attack

- Aka:
 - latent-space adversarial attack
- Optimization objective

$$\max_{\|\zeta\|_p \leq \eta} \mathcal{L}(F_\theta(G_\varphi(z + \zeta)), y_{true})$$



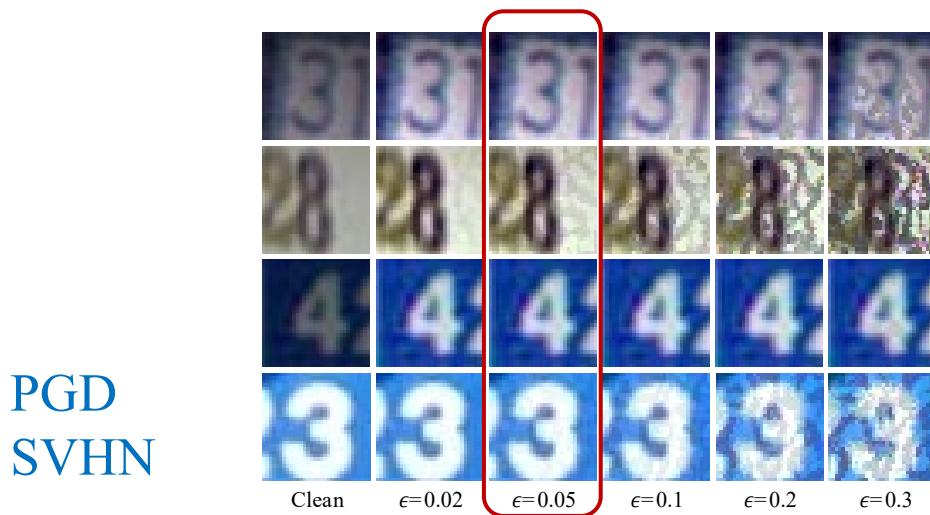
OM-PGD
CIFAR-10

L_p Threats to Deep Neural Networks (DNNs)

Off-manifold Adversarial (Example) Attack

- Aka:
 - Regular adversarial attack
 - Input-space adversarial attack
 - Pixel-space adversarial attack
- Optimization objective

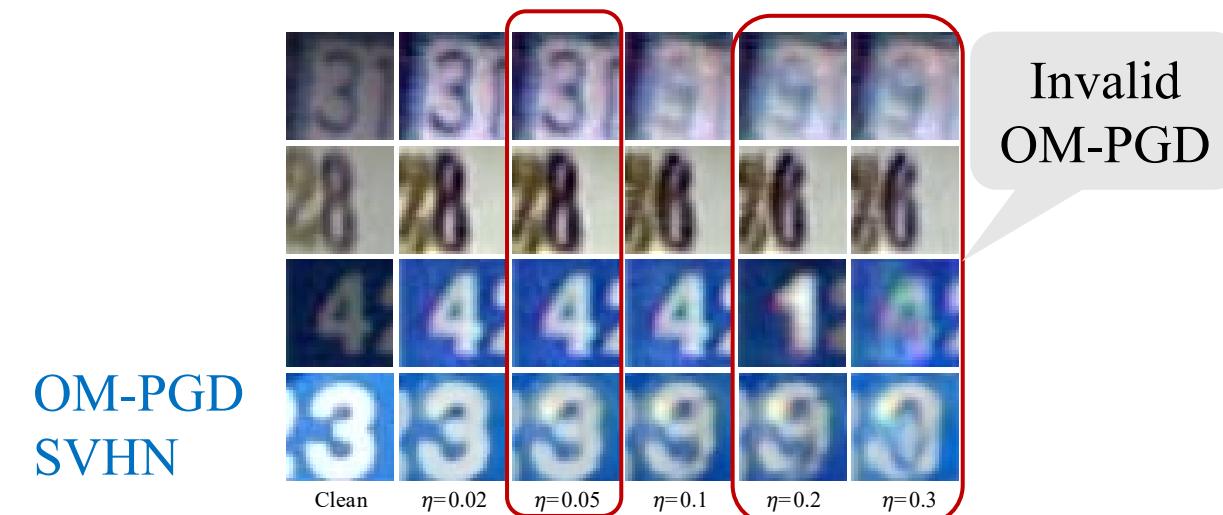
$$\max_{\|\delta\|_p \leq \epsilon} \mathcal{L}(F_\theta(x + \delta), y_{true})$$



On-manifold Adversarial (Example) Attack

- Aka:
 - latent-space adversarial attack
- Optimization objective

$$\max_{\|\zeta\|_p \leq \eta} \mathcal{L}(F_\theta(G_\varphi(z + \zeta)), y_{true})$$



Against Off-manifold Adversarial Attack

- Adversarial Training (AT): $(x + \delta, y_{true})$

- Input-space AT
 - FGSM-AT
 - PGD-AT

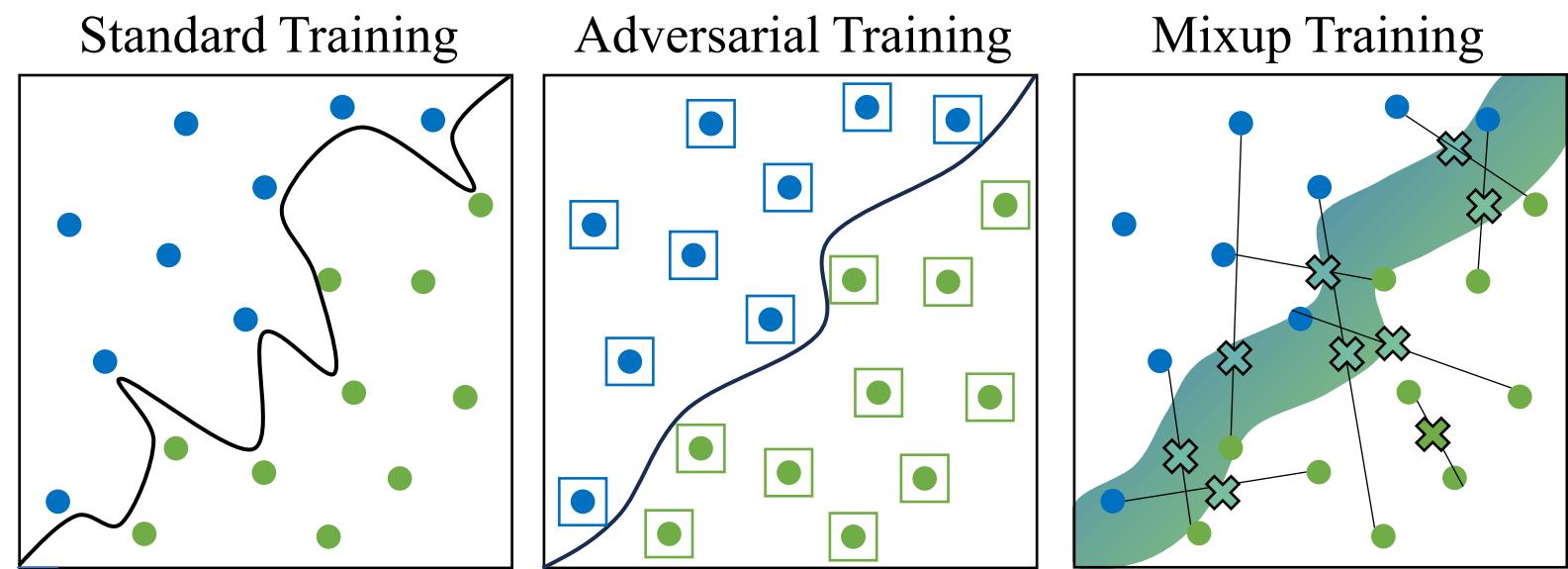
- Mixup Training: $(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2)$

- Input-space Mixup
 - InputMixup
 - CutMix
 - PuzzleMixup
- Hidden-space Mixup
 - ManifoldMixup
 - PatchUp

Against On-manifold Adversarial Attack

- On-Manifold Adversarial Training (OMAT):

- Latent-space AT
 - Dual Manifold-AT (DMAT)
 - FGSM-AT + OM-FGSM-AT
 - PGD-AT + OM-PGD-AT



Improve Off/On-Manifold Adversarial Robustness

- **Issue 1:**

- AT defenses require the defender to have some knowledge of the attack in advance, so that the defender can actively generate adversarial examples for training.

- **Issue 2:**

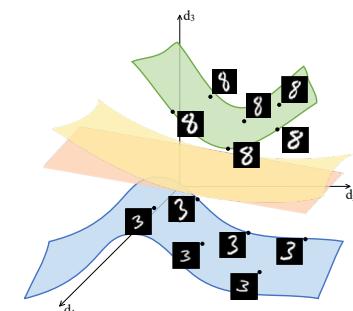
- All of existing Mixup defenses focused on improving robustness to off-manifold adversarial attacks but ignores on-manifold adversarial attacks and non- L_p attacks.

- **Problem to be solved:**

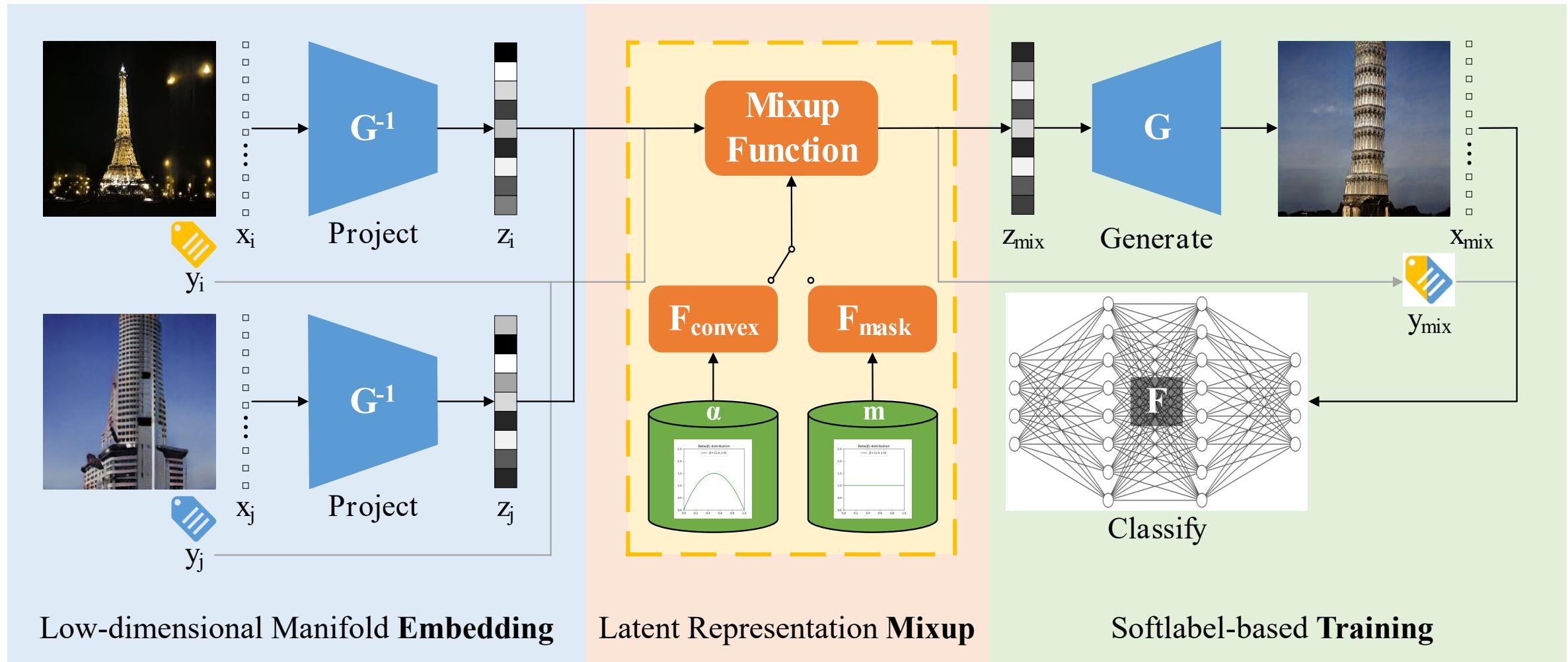
- Assume the attack knowledge is completely unknown, defender try to enhance the robustness against the off-manifold and on-manifold adversarial attacks at the same time.

- **Idea:**

- Construct interpolation samples in the latent space where embedded with the approximately exact manifold.
 - Off-manifold interpolation points → off-manifold robustness
 - On-manifold interpolation points → on-manifold robustness
- Use the mixed label to supervise the learning, so that the model is encouraged to assign class probabilities based on the interpolated proportion.



Framework of Proposed LarepMixup Training



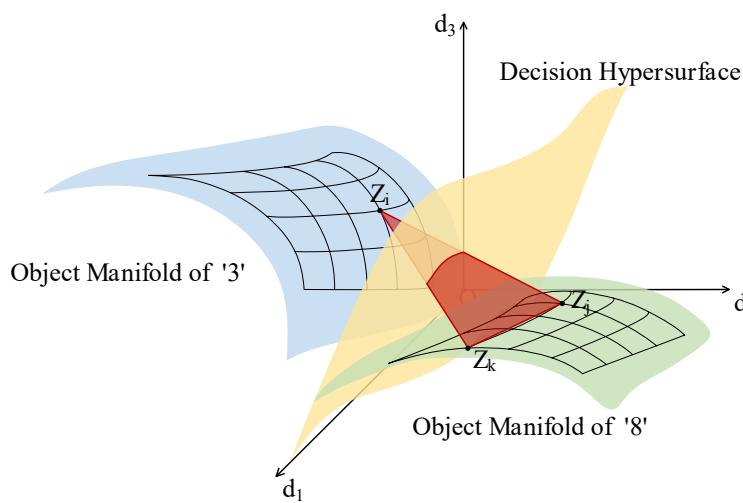
Proposed Multi-mode Manifold Interpolation Strategy

Convex Combination-based Interpolation

- Mixed Sample $z_{mix} = \alpha_1 z_1 + \dots + \alpha_k z_k$
- Mixed Label $y_{mix} = \alpha_1 y_1 + \dots + \alpha_k y_k$
- Coefficient vector

$$\alpha \in A := \{R^k, \alpha_i \in [0,1], \sum_{i=0}^k \alpha_i = 1\}$$

- Case $k = 2$, sample α from $Beta(\beta)$.
- Case $k > 2$, sample α from $Dirichlet(\gamma)$.

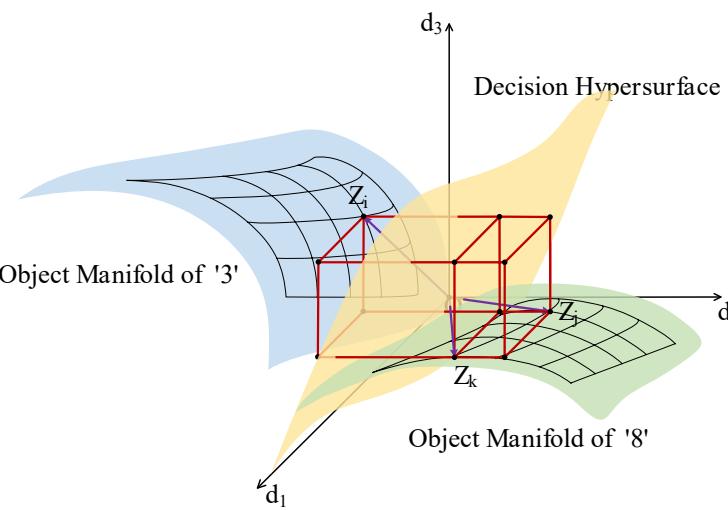


Binary Mask Combination-based Interpolation

- Mixed Sample $z_{mix} = m_1 z_1 \odot \dots \odot m_k z_k$
- Mixed Label $y_{mix} = \lambda_1 y_1 + \dots + \lambda_k y_k$
- Coefficient vector

$$m_i \in B := \{0,1\}^n, \sum_{i=0}^k m_i = 1_B$$

$$\lambda_i = \frac{\text{Num}_{m_i=1}}{n}$$



- Case $k = 2$, sample m_1 from n -fold $Bernoulli(p)$, n is the dimension of z .
- Case $k > 2$, sample m_2 from q -fold $Bernoulli(p)$, q is the number of non-zero elements in the vector $1_B - m_1$.
- Sample p from $Uniform(0,1)$.

Embedding from Input Space to Latent Representation Space

$$(x, y_{true}) \rightarrow (z, y_{true})$$

- Embedding network: trained styleGAN
- Embedding algorithm:
 - Sample w randomly from $Normal(0,1)$
 - $t = 0$
 - $z_t = F_{map}(w)$
 - While $t < T$ do
 - $G(z_t)$
 - $z_{t+1} = z_t - \eta(\nabla_{z_t} L_{styleGAN}(G(z_t), x))$
 - $t = t + 1$
 - End While
 - $z = z_t$

Visualization

- Indirectly demonstrates the quality of the learned data manifold, composed of several object manifolds.
- $G(z)$ from D_{test} : Data distribution supported by the learned manifold is close to the true data distribution.
- Unseen $G(z)$ by sampling z with random seeds.



Embedding from Input Space to Latent Representation Space

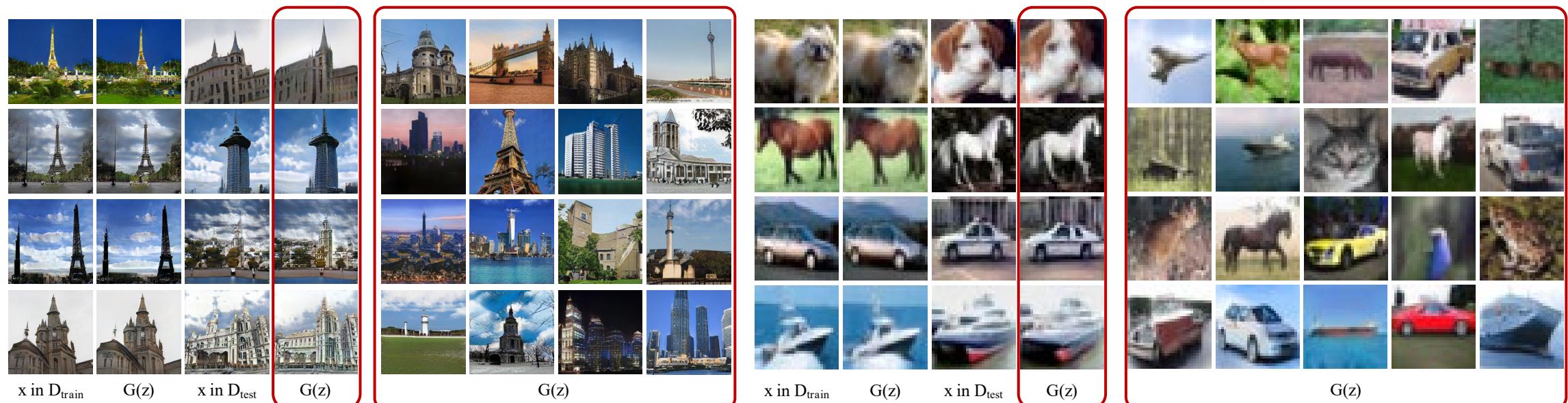
$$(x, y_{true}) \rightarrow (z, y_{true})$$

- Embedding network: trained styleGAN
- Embedding algorithm:

- Sample w randomly from $Normal(0,1)$
- $t = 0$
- $z_t = F_{map}(w)$

Visualization

- Indirectly demonstrates the quality of the learned data manifold, composed of several object manifolds.
- $G(z)$ from D_{test} : Data distribution supported by the learned manifold is close to the true data distribution.
- Unseen $G(z)$ by sampling z with random seeds.



Mapping from Latent Representation Space to Input Space

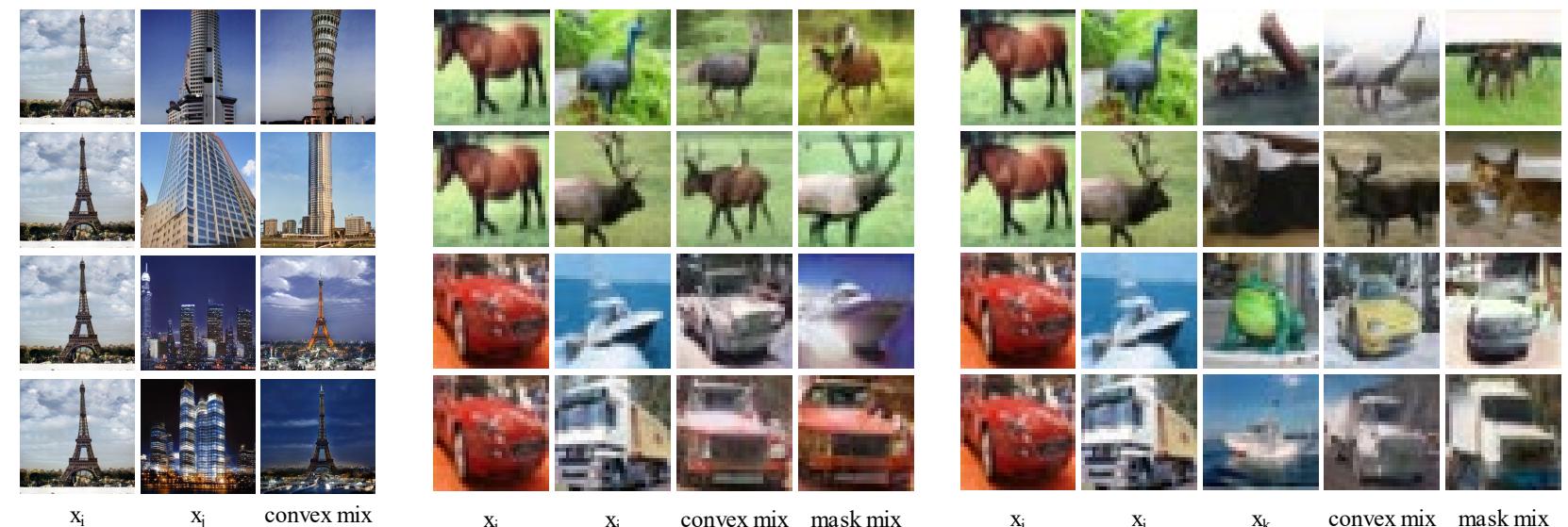
$$(z_{mix}, y_{mix}) \rightarrow (x_{mix}, y_{mix})$$

- Generate network: trained styleGAN
- Generate Function: $x_{mix} = G(z_{mix})$
- Dual / Ternary LarepMixup
 - Convex Combination
 - Binary Mask combination

- ✓ Convex mixup: mixed examples show **more smooth** mixed characteristics between source features.
- ✓ Binary mask mixup: mixed examples show **fewer transitions** between source features.

Visualization

- For convex mixup, coefficient α can take a value from the **continuous** range, $[0, 1]$.
- For binary mask mixup, coefficient m is **discrete** and can only be taken from the binary set $\{0, 1\}^n$.



Fine Tuning Vanilla DNN with Mixed Samples and Mixed Labels

Standard Train

- We train the DNN on the original clean trainset

$$D_{ori_tra} = \{(x, y_{true})\}$$

- One-hot label-based Cross entropy loss

➤ One hot coding $y_{true} \in \{0,1\}^C$

$$L(f(x), y_{true}) = - \sum_{i=1}^C y_i \log(p_i)$$

- Optimization objective

$$\min_{\theta} \mathbb{E}_{(x,y) \sim D_{ori_tra}} L(f_{\theta}(x, y))$$

Full Fine Tuning

- We retrain the vanilla DNN on the augmented dataset

$$D_{fin_tun} = D_{mix} \cup D_{ori_tra}$$

- Soft label-based cross entropy loss

$$\begin{aligned} L_{soft}(f(x), y_{mix}) \\ = L_{soft}(f(x), \alpha_1 y_1 + \dots + \alpha_k y_k) \\ = \alpha_1 L(f(x), y_1) + \dots + \alpha_k L(f(x), y_k) \end{aligned}$$

- Optimization objective

$$\min_{\theta} \mathbb{E}_{(x,y) \sim D_{fin_tun}} L_{soft}(f_{\theta}(x, y))$$

Experimental Setup

Datasets and Models

- Environment
 - PyTorch 1.8.1, CUDA V11.1.74
 - NVIDIA GV102 GPU
 - Adversarial Robustness Toolbox, advertorch
- Dataset
 - [CIFAR-10, SVHN](#)
 - [ImageNet-Mixed10](#) (a subset of 10 categories)
- Model
 - Convolutional block-based: [Alexnet](#) and [VGG](#)
 - Residual block-based: [ResNet](#), [DenseNet](#), [PreActResNet](#), and [WideResNet](#)
 - Inception block-based: [GoogLeNet](#)

Baselines

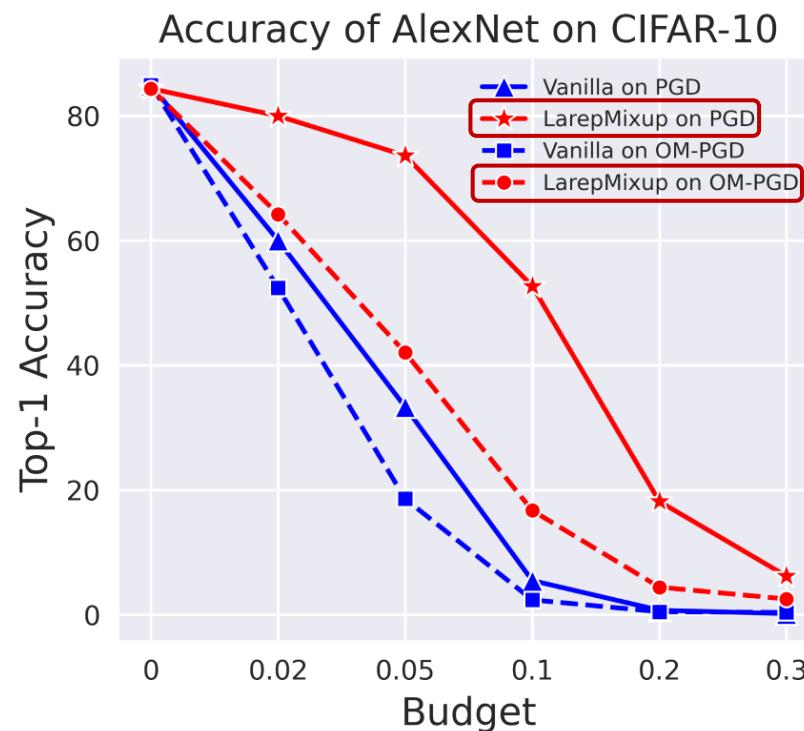
- Attack methods
 - Off-manifold attack: FGSM, PGD, AutoAttack, DeepFool, CW
 - On-manifold attack: OM-FGSM, OM-PGD
- Defense methods
 - Mixup training methods (5)
 - Adversarial training methods (2)

Method	Attack Surfaces	Attack Algorithm	Augmentation
PGD-AT[36]	Off-manifold	Known	Input Space
PGD-DMAT[35]	Off/On-manifold	Known	Input/Latent Space
InputMixup[56]	Off-manifold	Unknown	Input Space
CutMix[54]	Off-manifold	Unknown	Input Space
PuzzleMixup[29]	Off-manifold	Unknown	Input Space
ManifoldMixup[52]	Off-manifold	Unknown	Latent Space
PatchUp[14]	Off-manifold	Unknown	Latent Space
LarepMixup(Ours)	Off/On-manifold	Unknown	Latent Space

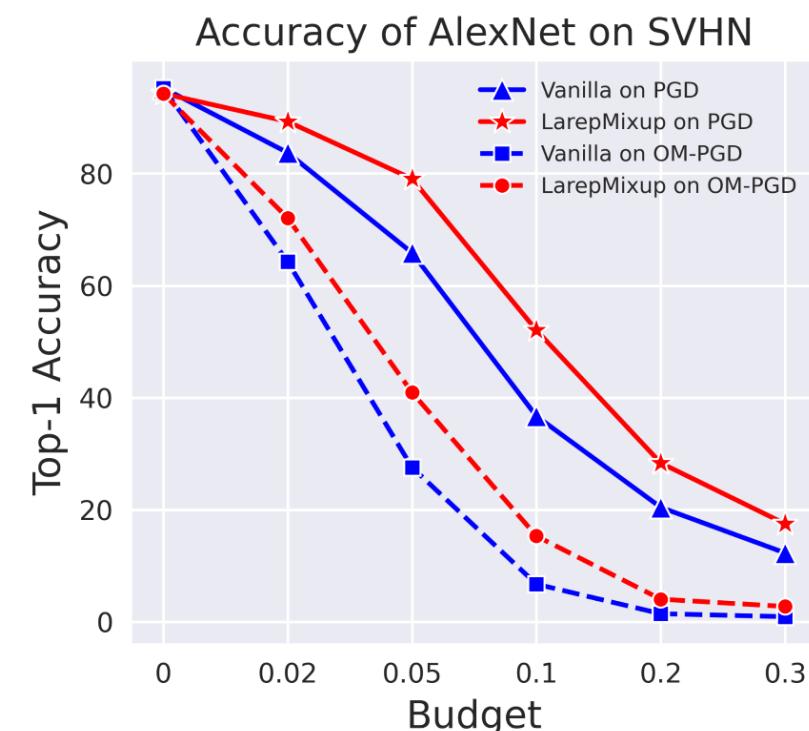
Exp 1: Robustness against Different L_p Adversarial Attack Budgets: $\|\delta\|_p \leq \epsilon$ and $\|\zeta\|_p \leq \eta$

- ❖ Exp Setup: Off-manifold perturbation δ budget $\epsilon \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.02. On-manifold perturbation ζ budget $\eta \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.005.

CIFAR-10



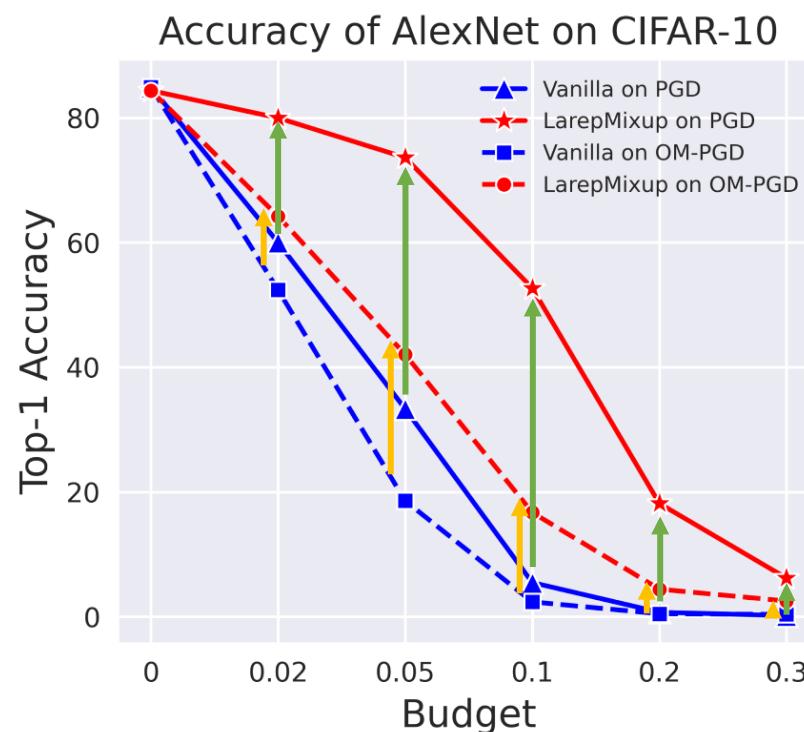
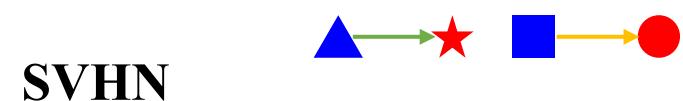
SVHN



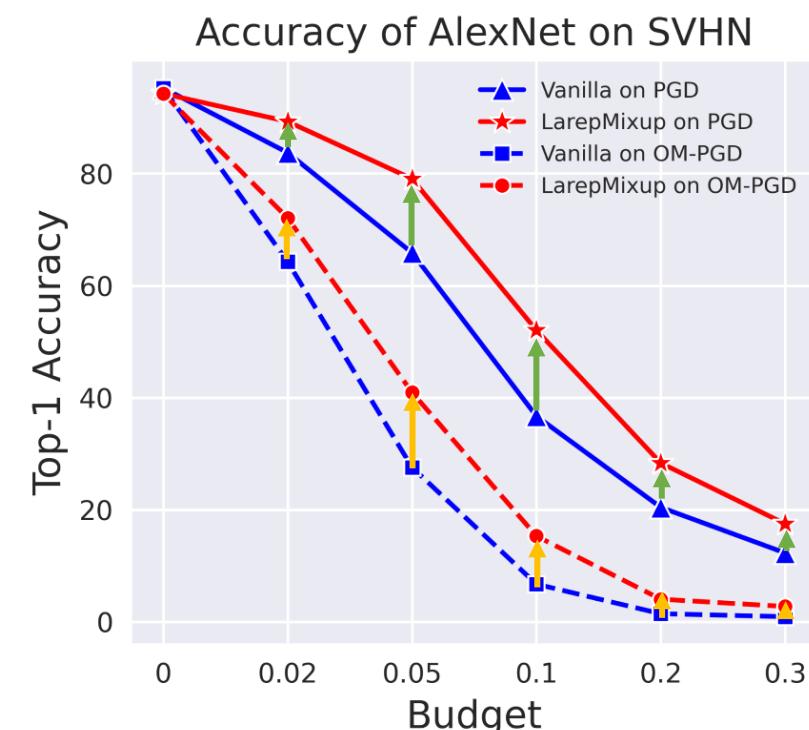
Exp 1: Robustness against Different L_p Adversarial Attack Budgets: $\|\delta\|_p \leq \epsilon$ and $\|\zeta\|_p \leq \eta$

- ❖ Exp Setup: Off-manifold perturbation δ budget $\epsilon \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.02. On-manifold perturbation ζ budget $\eta \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.005.
- Finding 1: Against PGD and OM-PGD attacks with five strengths, LarepMixup trained AlexNet models always performs better than standard trained models.

CIFAR-10



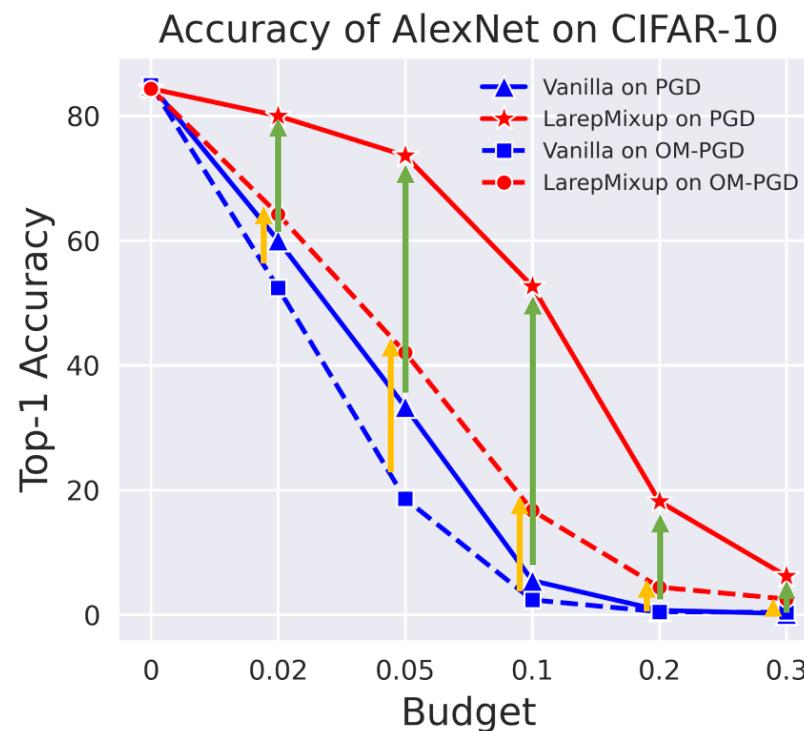
SVHN



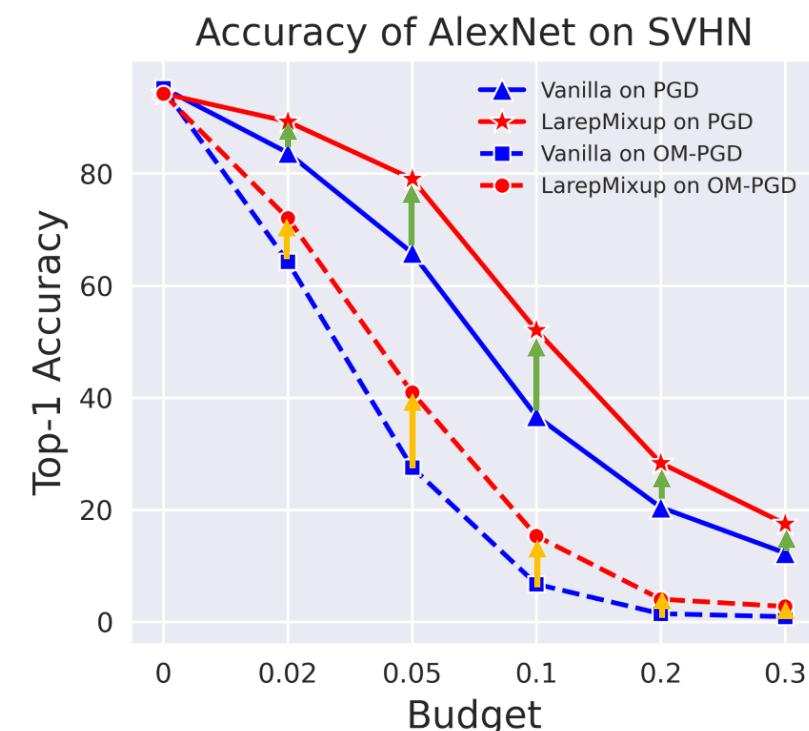
Exp 1: Robustness against Different L_p Adversarial Attack Budgets: $\|\delta\|_p \leq \epsilon$ and $\|\zeta\|_p \leq \eta$

- ❖ Exp Setup: Off-manifold perturbation δ budget $\epsilon \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.02. On-manifold perturbation ζ budget $\eta \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.005.
- Finding 2: **The model has the best defense against attacks with medium budgets.** For PGD and OM-PGD attacks, the robustness against $\epsilon = 0.1$ and $\eta = 0.05$ increase most, respectively.

CIFAR-10



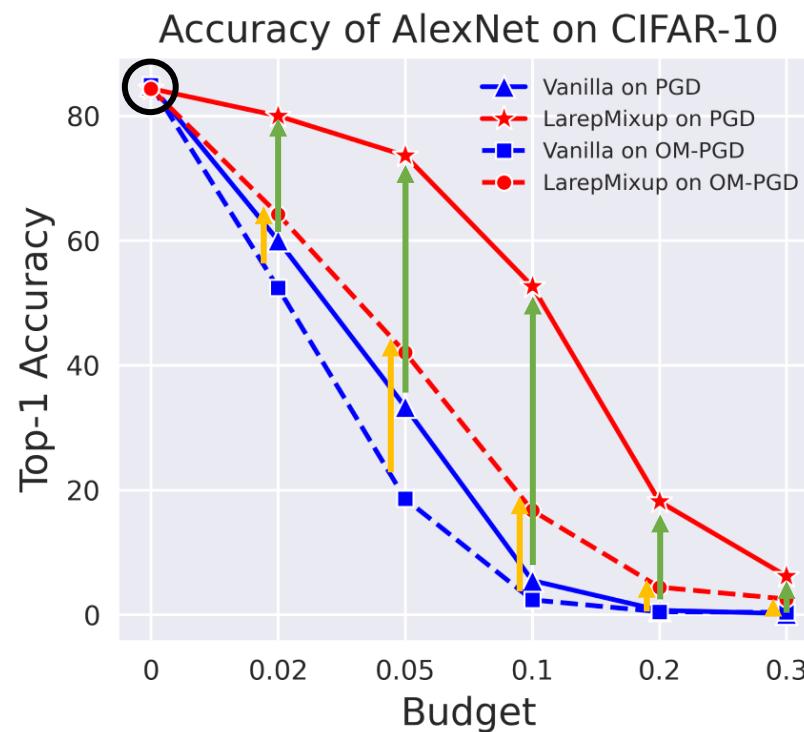
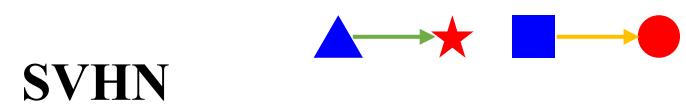
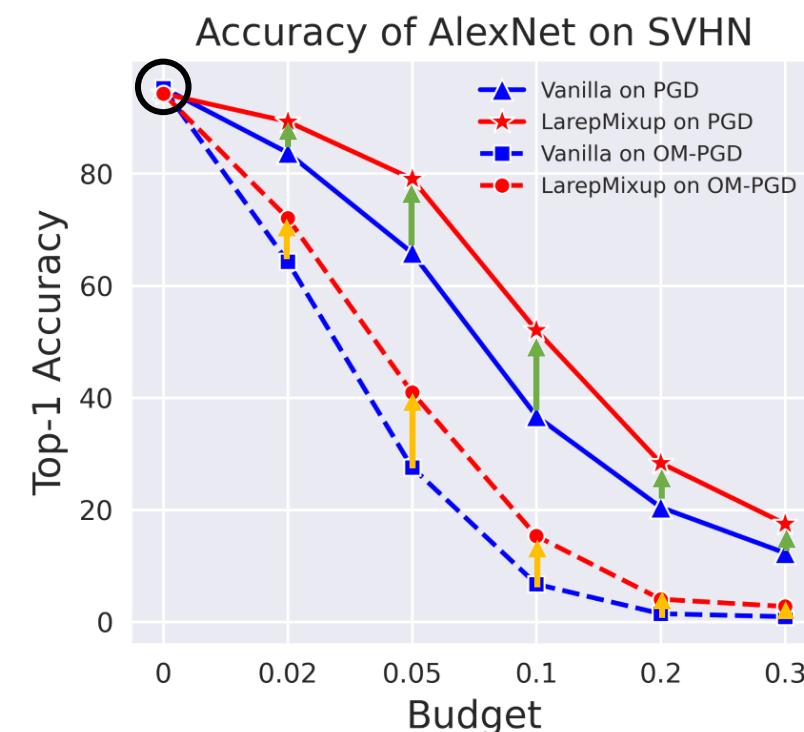
SVHN



Exp 1: Robustness against Different L_p Adversarial Attack Budgets: $\|\delta\|_p \leq \epsilon$ and $\|\zeta\|_p \leq \eta$

- ❖ Exp Setup: Off-manifold perturbation δ budget $\epsilon \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.02. On-manifold perturbation ζ budget $\eta \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.005.
- Finding 3: The model after LarepMixup training have very **similar accuracy** performance on clean examples to **that before training**.

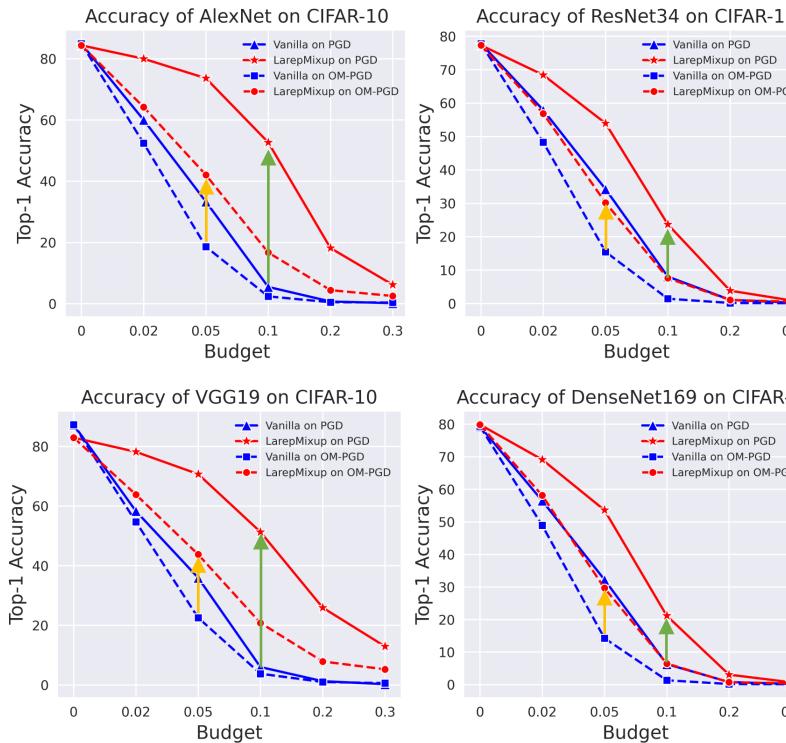
CIFAR-10



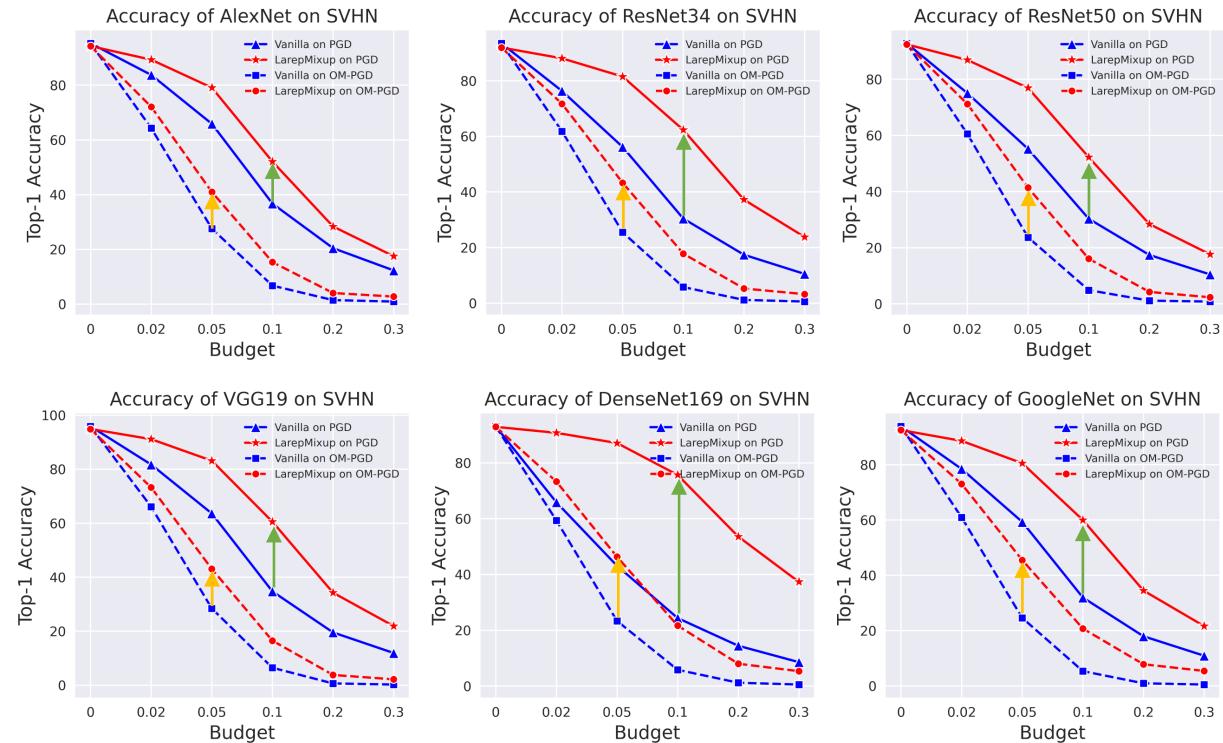
Exp 1: Robustness against Different L_p Adversarial Attack Budgets: $\|\delta\|_p \leq \epsilon$ and $\|\zeta\|_p \leq \eta$

- ❖ Exp Setup: Off-manifold perturbation δ budget $\epsilon \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.02. On-manifold perturbation ζ budget $\eta \in \{0.02, 0.05, 0.1, 0.2, 0.3\}$, single step budget is 0.005.
- Finding 4 : On other models (VGG19, ResNet34, DenseNet169, ResNet50, GoogleNet), conclusions from observations 1/2/3 hold true.

CIFAR-10



SVHN



Exp 2: Comparison with Existing Mixup Training

- ❖ Exp Setup: Run six times, mean and standard deviation, 40 epochs, α from $Beta(\beta = (1.0, 1.0))$, budget 0.05.
- Finding 1: Against off-manifold attacks on CIFAR-10, LarepMixup also perform better than others on robust accuracy and clean accuracy.

Table 2: Accuracy (%) of CIFAR-10 classification models on off/on-manifold adversarial examples

PreActResNet18								
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	Known Attacker	Modify Network
Vanilla	87.37±0.00	32.07±0.00	28.93±0.00	7.59±0.00	10.36±0.00	2.60±0.00		
InputMixup[56]	84.48±1.45	63.58±3.36	68.12±3.46	56.63±10.20	37.97±2.58	41.11±2.10	✗	✗
CutMix[54]	82.14±3.00	65.51±1.03	69.67±1.34	<u>64.41±3.55</u>	36.79±2.60	39.74±3.10	✗	✗
PuzzleMixup[29]	83.11±1.64	65.73±2.46	70.35±2.60	64.03±6.06	38.86±1.53	41.83±1.74	✗	✗
ManifoldMixup[52]	71.10±4.17	49.26±1.34	52.49±1.91	44.08±1.60	25.33±2.76	27.19±2.53	✗	✓
PatchUp[14]	72.02±4.10	51.35±2.13	55.91±2.29	44.61±2.56	28.81±3.35	30.94±3.13	✗	✓
Ours-Convex	84.02±1.77	68.86±2.88	72.65±3.59	66.98±5.93	<u>39.03±2.16</u>	<u>42.03±2.31</u>	✗	✗
Ours-Mask	84.60±1.27	<u>66.56±1.50</u>	<u>71.22±1.93</u>	63.69±4.61	39.27±2.97	42.54±2.74	✗	✗
PreActResNet34								
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	Known Attacker	Modify Network
Vanilla	83.57±0.00	31.37±0.00	25.71±0.00	5.27±0.00	12.27±0.00	1.89±0.00		
InputMixup[56]	68.42±7.38	62.19±4.22	63.84±4.98	63.79±4.99	26.36±4.07	29.77±4.16	✗	✗
CutMix[54]	71.21±6.16	62.45±2.71	64.61±3.50	64.30±3.16	28.88±2.07	32.12±2.38	✗	✗
PuzzleMixup[29]	67.06±7.62	60.89±4.99	62.55±5.76	62.66±5.84	25.89±2.98	28.96±3.37	✗	✗
ManifoldMixup[52]	73.69±1.78	49.65±1.94	52.24±2.08	43.75±2.04	31.09±3.13	32.81±3.18	✗	✓
PatchUp[14]	72.71±2.96	49.53±1.44	52.76±2.80	42.31±1.80	32.35±3.66	34.10±3.45	✗	✓
Ours-Convex	<u>78.44±1.60</u>	67.81±1.04	71.12±1.08	70.60±1.30	33.98±1.04	37.42±1.03	✗	✗
Ours-Mask	77.13±3.17	<u>66.16±1.58</u>	<u>68.90±1.62</u>	<u>68.40±2.16</u>	<u>32.95±2.26</u>	<u>36.38±2.23</u>	✗	✗

Convex
combination
Binary Mask
combination

For each
column:
champion
runner up

Exp 2: Comparison with Existing Mixup Training

- ❖ Exp Setup: Run six times, mean and standard deviation, 40 epochs, α from $Beta(\beta = (1.0, 1.0))$, budget 0.05. None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting.
- Finding 2: Against **on-manifold attacks on CIFAR-10**, LarepMixup always occupied champions and runners-up.

Table 2: Accuracy (%) of CIFAR-10 classification models on off/on-manifold adversarial examples

PreActResNet18										
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	OM-FGSM	OM-PGD	Known Attacker	Modify Network
Vanilla	87.37±0.00	32.07±0.00	28.93±0.00	7.59±0.00	10.36±0.00	2.60±0.00	51.02±0.00	21.68±0.00		
InputMixup[56]	84.48±1.45	63.58±3.36	68.12±3.46	56.63±10.20	37.97±2.58	41.11±2.10	58.53±0.43	44.11±1.34	✗	✗
CutMix[54]	82.14±3.00	65.51±1.03	69.67±1.34	<u>64.41±3.55</u>	36.79±2.60	39.74±3.10	57.59±0.31	43.50±1.71	✗	✗
PuzzleMixup[29]	83.11±1.64	65.73±2.46	70.35±2.60	64.03±6.06	38.86±1.53	41.83±1.74	57.80±0.77	43.68±2.19	✗	✗
ManifoldMixup[52]	71.10±4.17	49.26±1.34	52.49±1.91	44.08±1.60	25.33±2.76	27.19±2.53	50.16±1.66	38.64±0.80	✗	✓
PatchUp[14]	72.02±4.10	51.35±2.13	55.91±2.29	44.61±2.56	28.81±3.35	30.94±3.13	52.22±2.32	41.33±1.24	✗	✓
Ours-Convex	84.02±1.77	68.86±2.88	72.65±3.59	66.98±5.93	<u>39.03±2.16</u>	<u>42.03±2.31</u>	60.02±0.91	46.72±1.52	✗	✗
Ours-Mask	<u>84.60±1.27</u>	<u>66.56±1.50</u>	<u>71.22±1.93</u>	63.69±4.61	39.27±2.97	42.54±2.74	58.36±0.60	<u>44.80±0.73</u>	✗	✗
PreActResNet34										
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	OM-FGSM	OM-PGD	Known Attacker	Modify Network
Vanilla	83.57±0.00	31.37±0.00	25.71±0.00	5.27±0.00	12.27±0.00	1.89±0.00	49.23±0.00	17.05±0.00		
InputMixup[56]	68.42±7.38	62.19±4.22	63.84±4.98	63.79±4.99	26.36±4.07	29.77±4.16	54.68±3.84	47.18±2.29	✗	✗
CutMix[54]	71.21±6.16	62.45±2.71	64.61±3.50	64.30±3.16	28.88±2.07	32.12±2.38	55.65±2.56	46.40±0.99	✗	✗
PuzzleMixup[29]	67.06±7.62	60.89±4.99	62.55±5.76	62.66±5.84	25.89±2.98	28.96±3.37	54.04±3.87	46.31±2.05	✗	✗
ManifoldMixup[52]	73.69±1.78	49.65±1.94	52.24±2.08	43.75±2.04	31.09±3.13	32.81±3.18	52.99±0.24	39.47±1.34	✗	✓
PatchUp[14]	72.71±2.96	49.53±1.44	52.76±2.80	42.31±1.80	32.35±3.66	34.10±3.45	53.03±2.37	39.38±1.63	✗	✓
Ours-Convex	<u>78.44±1.60</u>	67.81±1.04	71.12±1.08	70.60±1.30	33.98±1.04	37.42±1.03	58.96±0.67	47.99±1.16	✗	✗
Ours-Mask	77.13±3.17	<u>66.16±1.58</u>	<u>68.90±1.62</u>	<u>68.40±2.16</u>	<u>32.95±2.26</u>	<u>36.38±2.23</u>	<u>58.31±0.96</u>	<u>47.30±1.06</u>	✗	✗

For each column:
champion
runner up

Exp 2: Comparison with Existing Mixup Training

- ❖ Exp Setup: Run six times, mean and standard deviation, 40 epochs, α from $Beta(\beta = (1.0, 1.0))$, budget 0.05. None of mixup schemes reported on-manifold robustness. We conduct a fair evaluation under the same setting.
- Finding 3: On SVHN, LarepMixup most frequently occupied champions and runners-up.

Table 3: Accuracy (%) of SVHN classification models on off/on-manifold adversarial examples

PreActResNet18										
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	OM-FGSM	OM-PGD	Known Attacker	Modify Network
Vanilla	95.97±0.00	57.29±0.00	34.57±0.00	29.21±0.00	22.51±0.00	21.54±0.00	41.04±0.00	6.78±0.00		
InputMixup[56]	94.39±0.79	68.77±2.03	58.81±2.34	51.25±2.22	60.50±3.33	<u>64.42±2.16</u>	44.58±0.86	18.48±1.04	✗	✗
CutMix[54]	94.19±1.07	68.78±2.01	59.52±3.28	52.50±3.64	57.45±3.26	63.62±1.52	44.31±1.02	17.87±0.91	✗	✗
PuzzleMixup[29]	<u>94.54±0.66</u>	67.55±1.79	58.79±3.34	51.65±3.48	55.87±2.22	63.42±1.51	43.63±0.62	16.00±1.15	✗	✗
ManifoldMixup[52]	89.15±4.22	67.21±1.85	<u>60.32±1.94</u>	<u>53.60±3.21</u>	52.95±3.15	60.57±1.97	43.32±1.52	22.19±2.01	✗	✓
PatchUp[14]	89.87±1.78	66.44±0.78	58.96±1.90	52.36±2.82	54.68±2.69	61.54±1.68	43.40±0.91	21.51±1.05	✗	✓
Ours-Convex	94.38±0.61	70.62±1.35	63.35±0.67	56.66±1.22	58.14±0.75	64.45±0.54	<u>45.24±0.44</u>	19.59±0.57	✗	✗
Ours-Mask	94.42±0.93	<u>70.22±1.30</u>	60.02±1.72	53.34±2.02	57.98±2.44	64.36±1.08	45.26±0.54	19.90±0.71	✗	✗

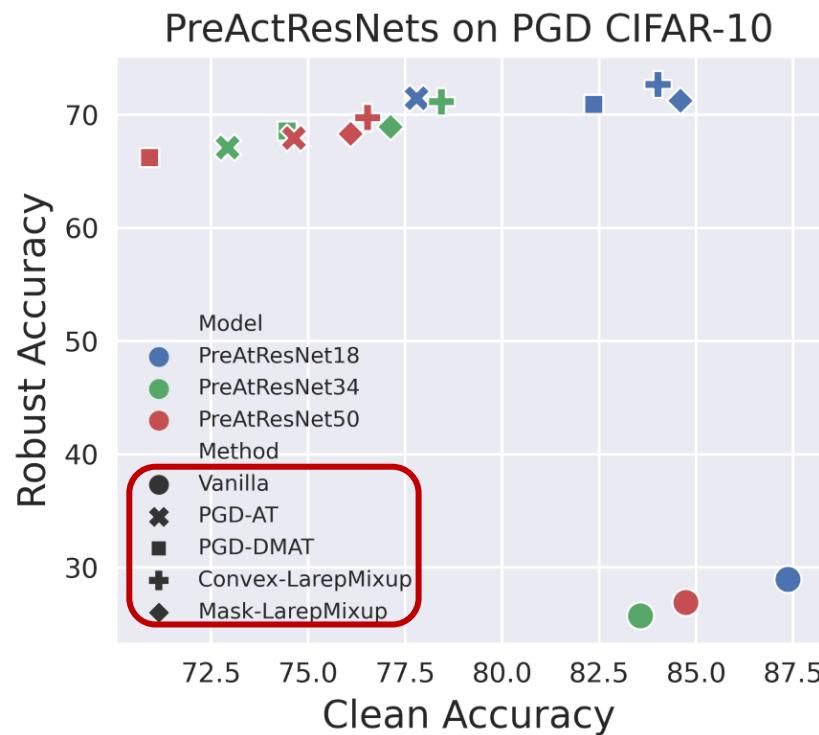
PreActResNet34										
Method	Clean	FGSM	PGD	AutoAttack	DeepFool	CW	OM-FGSM	OM-PGD	Known Attacker	Modify Network
Vanilla	95.75±0.00	57.11±0.00	35.57±0.00	29.80±0.00	19.94±0.00	25.62±0.00	36.62±0.00	5.01±0.00		
InputMixup[56]	93.41±1.85	66.14±0.85	60.42±6.52	52.82±7.44	49.76±3.32	62.47±1.10	39.97±0.97	17.07±0.85	✗	✗
CutMix[54]	93.36±2.74	65.71±0.56	60.09±7.25	53.39±8.66	49.26±2.00	61.83±1.35	39.81±1.09	16.25±0.88	✗	✗
PuzzleMixup[29]	92.53±4.79	65.12±0.82	61.06±7.05	54.17±8.54	48.65±3.22	61.63±2.37	39.24±1.89	15.89±2.15	✗	✗
ManifoldMixup[52]	81.27±2.68	61.63±2.07	63.61±3.10	59.19±1.94	44.88±4.40	56.29±3.92	36.11±1.07	<u>21.68±1.26</u>	✗	✓
PatchUp[14]	68.39±9.86	51.94±4.91	55.01±6.31	52.17±5.91	36.07±2.41	47.47±5.47	31.81±2.20	22.19±2.72	✗	✓
Ours-Convex	<u>94.94±0.31</u>	68.37±0.76	61.75±3.65	53.55±4.05	52.21±1.67	64.61±1.27	41.13±0.41	16.88±0.38	✗	✗
Ours-Mask	93.63±1.13	<u>67.69±0.52</u>	<u>63.21±5.39</u>	<u>55.74±5.69</u>	<u>52.10±2.75</u>	<u>64.27±1.30</u>	<u>40.70±0.60</u>	17.01±0.47	✗	✗

For each column:
champion
runner up

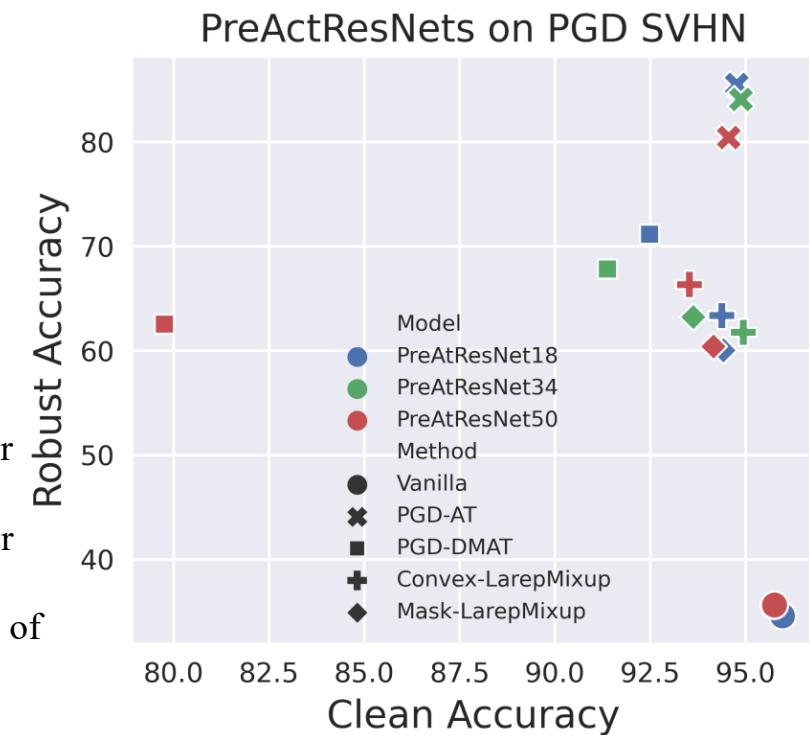
Exp 3: Comparison with Existing Adversarial Training

- ❖ Exp Setup: budget $\epsilon = 0.05$, single step budget is 0.02. budget $\eta = 0.05$, single step budget is 0.005. The number of augmented adversarial examples is the same as the number of augmented mixed examples.
- There is a strong assumption in AT, that is, the defender needs to construct adversarial examples during the training phase.

CIFAR-10



SVHN

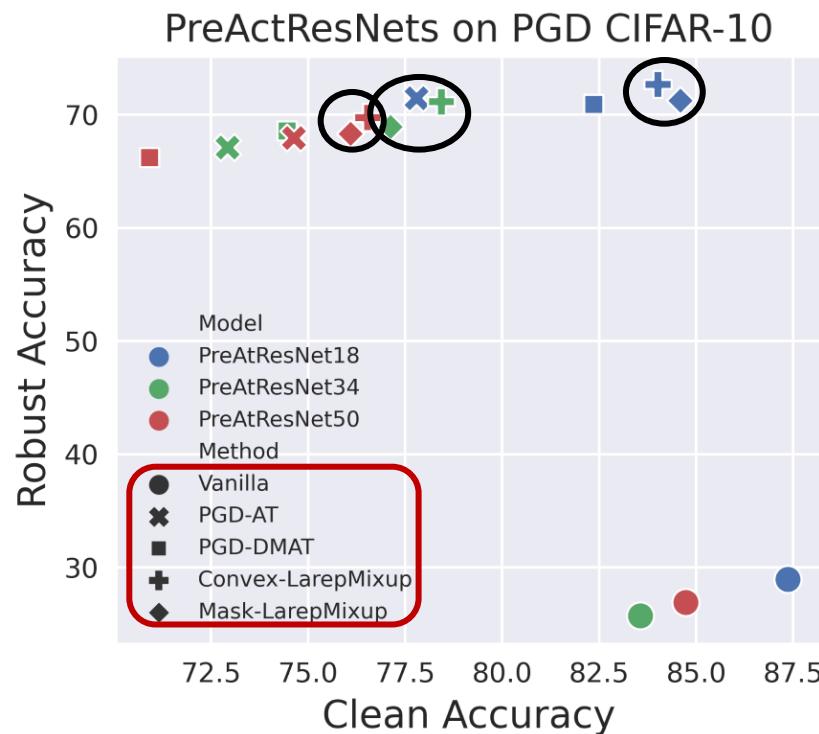


- ✓ larger x -axis means higher clean accuracy
- ✓ larger y -axis means higher adversarial accuracy
- ✓ The same color is a group of comparison results.

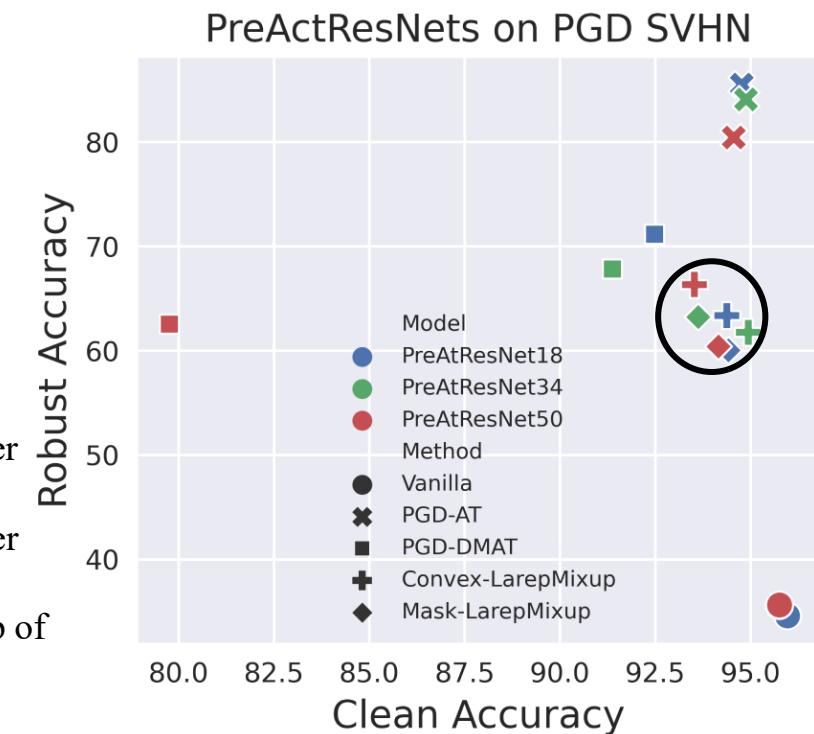
Exp 3: Comparison with Existing Adversarial Training

- ❖ Exp Setup: budget $\epsilon = 0.05$, single step budget is 0.02. budget $\eta = 0.05$, single step budget is 0.005. The number of augmented adversarial examples is the same as the number of augmented mixed examples.
- Finding 1: Against PGD on CIFAR-10, LarepMixup are better than AT and DMAT in both aspects.
- Finding 2: Against PGD on SVHN, LarepMixup outperforms in clean accuracy.

CIFAR-10



SVHN

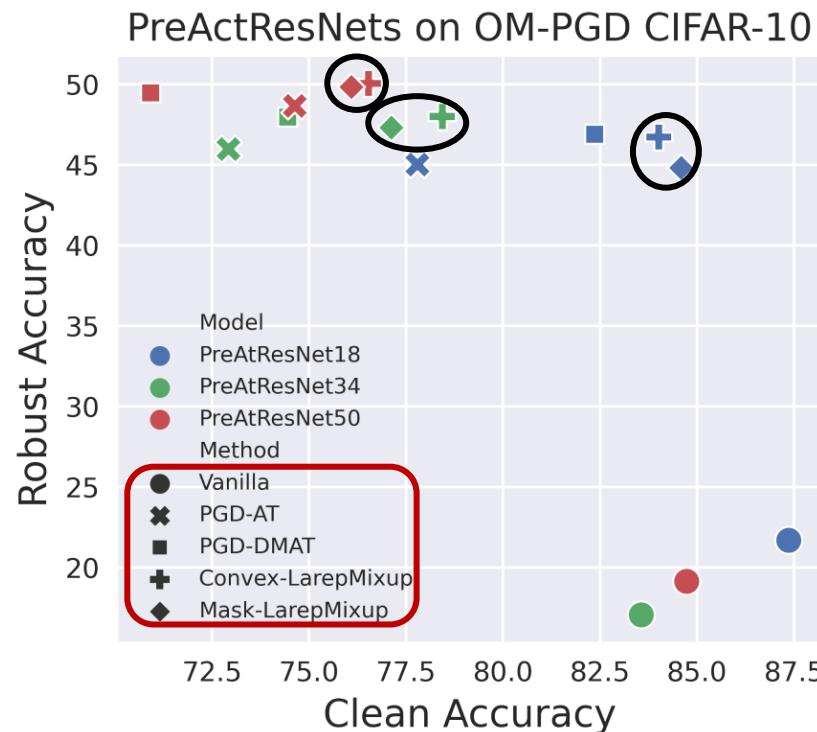


- ✓ larger x -axis means higher clean accuracy
- ✓ larger y -axis means higher adversarial accuracy
- ✓ The same color is a group of comparison results.

Exp 3: Comparison with Existing Adversarial Training

- ❖ Exp Setup: budget $\epsilon = 0.05$, single step budget is 0.02. budget $\eta = 0.05$, single step budget is 0.005. The number of augmented adversarial examples is the same as the number of augmented mixed examples.
- Finding 3: Against [OM-PGD on CIFAR-10](#) and [SVHN](#), conclusions from observation 1/2 hold true.
- Finding 4: Robustness advantage between PGD-AT and PGD-DMAT is reversed.

CIFAR-10



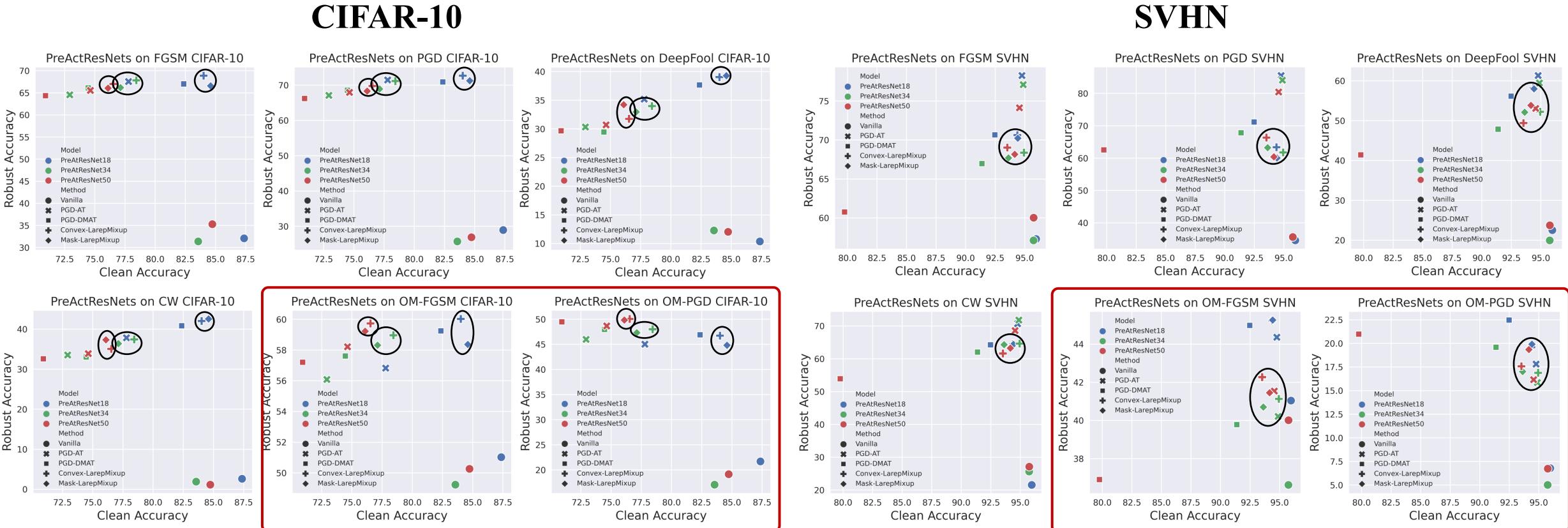
SVHN



- ✓ Right points mean better accuracy on clean examples.
- ✓ Higher points mean better accuracy on adversarial examples.
- ✓ The same color is a group of comparison results.

Exp 3: Comparison with Existing Adversarial Training

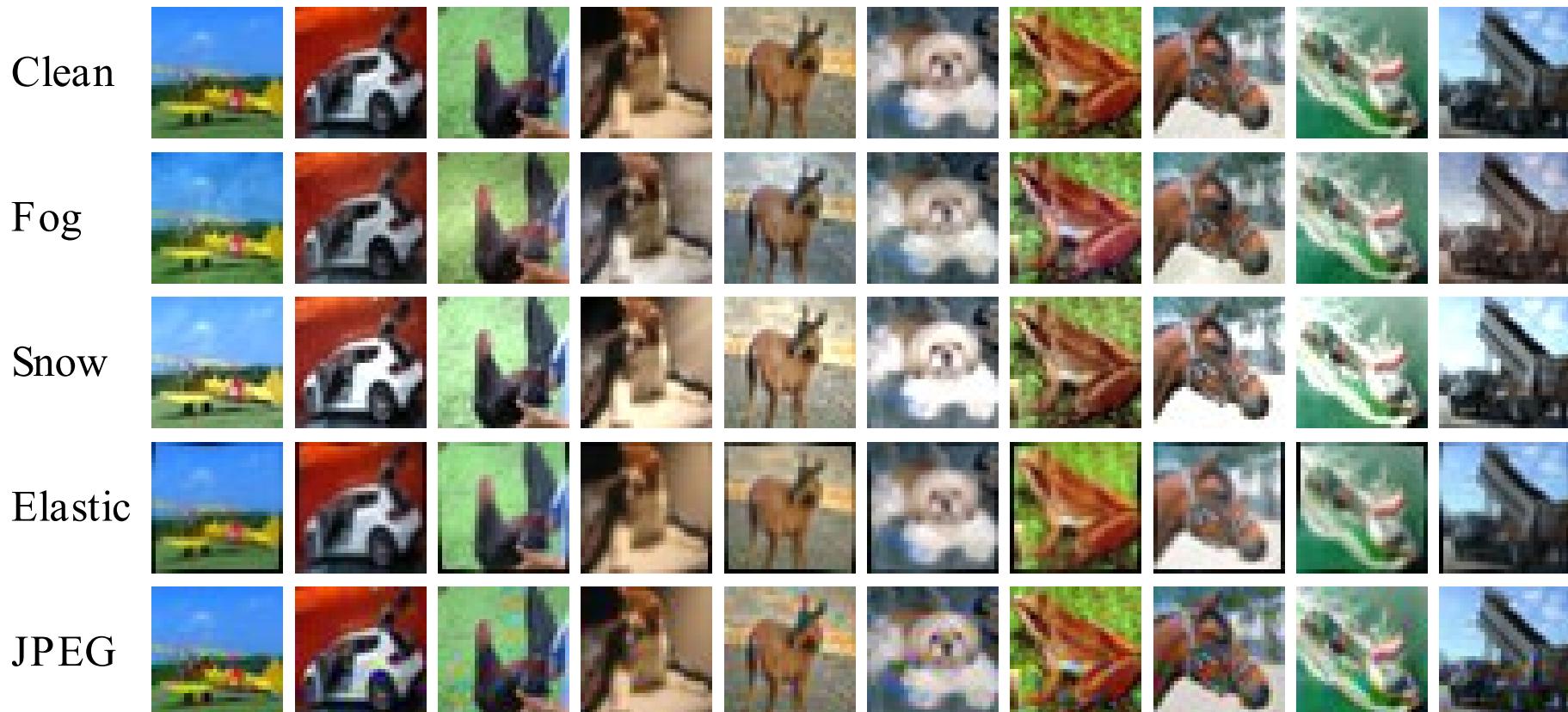
- ❖ Exp Setup: budget $\epsilon = 0.05$, single step budget is 0.02. budget $\eta = 0.05$, single step budget is 0.005. The number of augmented adversarial examples is the same as the number of augmented mixed examples.
- Finding 5: On other attacks (FGSM, OM-FGSM, DeepFool, CW), previous conclusions hold true.
- Finding 6: PGD-AT and PGD-DMAT have decreased robustness improvement against non-PGD related attacks.



Exp 4: Robustness against Non- L_p Constrained Perturbations

- ❖ Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
- Simulate natural environmental noise, compression distortion, etc.

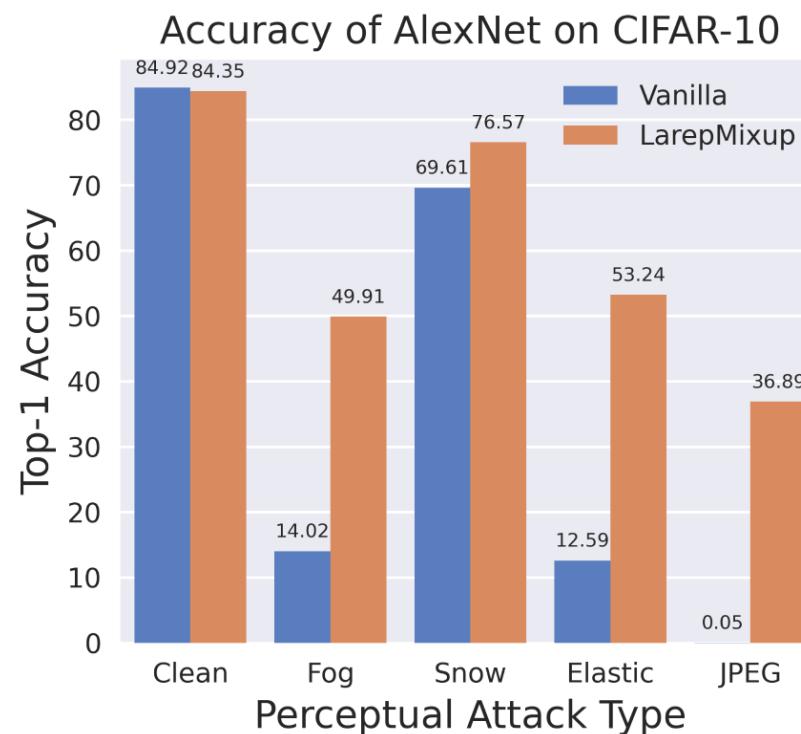
CIFAR-10



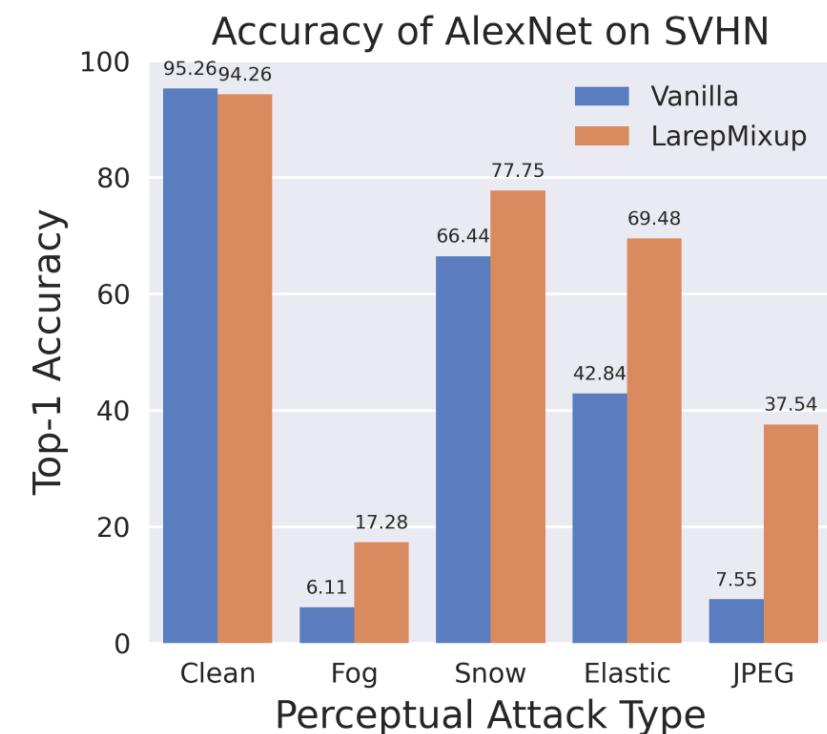
Exp 4: Robustness against Non- L_p Constrained Perturbations

- ❖ Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
- Finding 1: The robust accuracy of AlexNet against perceptual attacks shows significant increase.
- Finding 2: The clean accuracy of AlexNet is not much different before and after LarepMixup training.

CIFAR-10



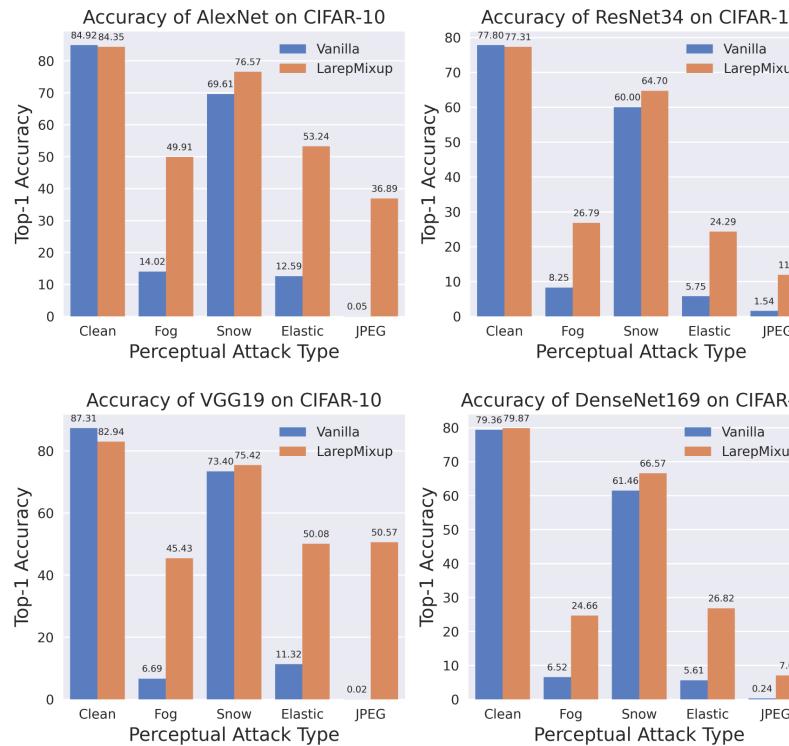
SVHN



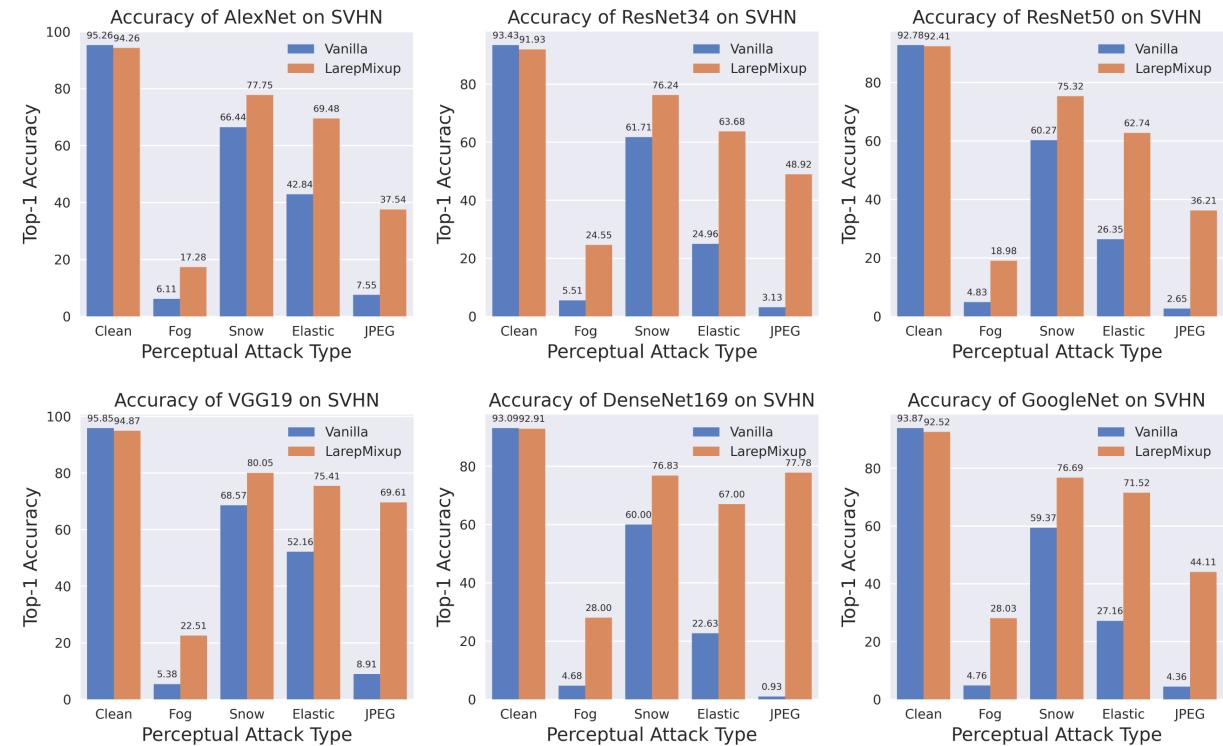
Exp 4: Robustness against Non- L_p Constrained Perturbations

- ❖ Exp Setup: 4 perceptual attacks Fog, Snow, Elastic, JPEG. Run three times and take the average.
- Finding 3: On other models (VGG19, ResNet34, DenseNet169, ResNet50, GoogleNet), conclusions from observation 1/2 hold true.

CIFAR-10



SVHN



Exp 5: Effect of Mixing Modes

- ❖ Exp Setup: High dimensional ImageNet-Mixed 10 (256×256 pixels). Run three times and take average.
- Finding 1: For off-manifold attacks, the robustness improvement from four mixing modes is not much different.
- Finding 2: For on-manifold attacks, the advantage of convex mixing is obvious. For source samples on the same object manifold, linear combination is more likely to produce interpolation points lying on the manifold.
- Finding 3: There is little difference in accuracy improvement in terms of the number of mixed source samples.

Table 4: Robust accuracy (%) of PreActResNet18 under different mixing modes (ImageNet-Mixed10)

Method	Vanilla	Dual-LarepMixup		Ternary-LarepMixup	
		Convex	Mask	Convex	Mask
off-manifold	Clean	90.47	<u>90.57±0.55</u>	<u>90.89±0.35</u>	<u>90.67±0.21</u>
	FGSM	13.93	<u>17.09±0.29</u>	<u>16.21±0.14</u>	<u>16.71±0.34</u>
	PGD	2.00	<u>5.38±0.81</u>	<u>4.68±0.45</u>	<u>4.73±0.69</u>
	AutoAttack	0.00	<u>3.74±0.19</u>	<u>3.68±0.29</u>	<u>3.60±0.18</u>
	DeepFool	8.87	<u>85.38±0.19</u>	<u>83.98±0.42</u>	<u>84.89±0.18</u>
	CW	0.10	<u>84.61±0.30</u>	<u>83.16±0.52</u>	<u>84.19±0.47</u>
on-manifold	OM-FGSM	26.90	<u>59.91±1.30</u>	<u>28.61±5.58</u>	<u>57.36±1.89</u>
	OM-PGD	20.43	<u>58.76±1.30</u>	<u>27.99±5.92</u>	<u>56.59±1.87</u>

Summary

- We propose LarepMixup, a mixup-based training framework towards addressing the threats from off/on-manifold adversarial attacks at the same time.
- We design a flexible data augmentation strategy, dual-mode manifold interpolation, for generating mixed examples using convex or binary mask mixing modes.
- To our knowledge, we are the first to focus on the performance of the mixup trained model on on-manifold L_p attacks and off-manifold non- L_p attacks.

Future Work

- While mixup training was originally proposed for image classification tasks, it can be [extended to other input domains](#), such as natural language processing, network intrusion detection.
 - Text Classification
 - Network Traffic Classification
- Help improve DNN's capability to handle variations in language syntax or traffic patterns and increases the model's robustness to unseen adversarial evasion attacks.

THANK YOU!

Mengdie Huang¹, Yi Xie¹, Xiaofeng Chen¹, Jin Li², Changyu Dong³, Zheli Liu⁴, Willy Susilo⁵

¹ Xidian University

² Guangzhou University

³ Newcastle University

⁴ Nankai University

⁵ University of Wollongong

Q&A

Mengdie Huang (Maggie)
mdhuang1@stu.xidian.edu.cn

