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ABSTRACT

ABSTRACT

In recent years, artificial intelligence (AI) powered by deep learning (DL) technologies has
revolutionized various data-driven pattern recognition fields. From processing unstructured
image data in computer vision to handling structured traffic data in cybersecurity, DL has
demonstrated remarkable potential. Deep neural networks (DNNs), the core of DL, utilize
multi-layer neuron structures to capture high-level features through rich nonlinear mappings.
By training on large datasets, DNNs learn the underlying distributions of data in multi-
dimensional spaces, enabling precise processing of complex and high-dimensional data. As
a result, DNNs have become a key force in modern AI systems due to their superior feature
representation and modeling capabilities compared to traditional machine learning (ML).

However, the opacity of internal decision-making processes in DNNs exposes AI systems
to growing security risks, particularly from adversarial attacks. Adversarial attacks, also
known as evasion attacks, occur during the model deployment phase, where attackers attempt
to induce incorrect predictions by feeding carefully crafted adversarial examples (AEs) into
the model. By applying slight perturbations to the original inputs, typically noted as clean
examples (CEs), these generated AEs are difficult to detect while significantly degrading
model performance. The effectiveness of AEs has been demonstrated in various practical
applications based on DNNs, such as deceiving image classification models in autonomous
driving systems and traffic classification models in network intrusion detection systems.

This dissertation focuses on the full lifecycle of DL models and addresses three critical is-
sues: generalizing the adversarial robustness of DNNs to unknown types of attacks, providing
formal guarantees for the adversarial robustness, and transferring the adversarial robustness
across different tasks. The research investigates key techniques for enhancing the adversar-
ial robustness of DNNs from three perspectives: robustness generalization during the data
preparation and training phases, robustness certification during testing, and robustness trans-
fer during deployment. Our main contributions are as follows:

1. We propose a robust training framework, Latent Representation Mixup (LarepMixup),
to improve the generalization of adversarial robustness of DNNs against adversarial attacks.
While the robustness of DNNs against specific adversarial attacks can be strengthened by
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adversarial training, it does not generalize well to novel or unseen attacks. To overcome this
issue, we introduce a defensemechanism that does not rely on prior knowledge of the attacker.
First, we develop a data augmentation approach based on multi-mode manifold interpolation,
generatingmixed samples near the decision boundary or following the underlying distribution
via convex mixing and binary mask mixing. Afterward, we design a multi-label training al-
gorithm based on mixed semantic samples and mixed labels to smooth the decision boundary
of the DNN, boosting robustness against perturbations near the boundary. Experiments on
various image classifiers and datasets show that the proposed method enhances both pixel-
level and representation-level robustness in white-box and black-box scenarios, improving
generalization across numerous input space and latent space perturbations. (Chapter III)

2. We propose a certified defense framework, Multi-order Adaptive Randomized Smoothing
(MARS), to tighten the certification of adversarial robustness of DNNs. While the robustness
of DNNs can be empirically evaluated by assessing the attack success rate of adversarial at-
tacks, it cannot theoretically guarantee the robustness against all possible input perturbations.
To this end, this work introduces a non-trivial robustness lower bound calculation mechanism
to estimate the maximum perturbation range, namely the certified robust radius, for each in-
put sample that can avoid misclassification, as a robustness guarantee for DNNs. First, we
design an adaptive randomized smoothing algorithm based on zero-order and first-order in-
formation of the smoothed classifier to calculate robust radii, yielding tighter lower bounds
of robustness compared to existing methods. Furthermore, we propose a dimension-wise
robust radius calculation algorithm based on the sensitivity of each feature dimension, en-
abling fine-grained robustness certification for heterogeneous input features. Experiments on
various network intrusion detectors and datasets show that the proposed method effectively
certifies the adversarial robustness in larger lp norm-bounded perturbation regions, improving
certified robustness against diverse adversarial attacks and natural corruption. (Chapter IV)

3. We propose a robustness-preserving transfer learning framework, Contrastive Adversarial
Representation Distillation (CARD), to transfer the adversarial robustness of DNNs across
different tasks. Training a robust model from scratch usually requires large datasets and sub-
stantial computational resources. Transferring robustness from a pre-trained robust source
model to new tasks can reduce these costs, but is challenging due to differences in data dis-
tribution and model structure between source and target domains, which makes capturing
universal robustness difficult. This work develops a robustness transfer mechanism that is
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not limited by domain and model similarities. First, we design a distillation strategy based
on adaptive dimensional alignment, which aligns input and hidden representation dimen-
sions between the target and source models, supporting knowledge transfer when the data
domain and model change. Moreover, we propose a contrastive transfer learning algorithm
based on dual robustness-aware views, which captures domain-invariant robustness through
adversarial manipulation and natural corruption views for transferring. Experiments on var-
ious network intrusion detectors and datasets show that the proposed method enhances the
transferability of adversarial robustness across data domains and model structures, achieving
leading adversarial robustness of lightweight models with limited training data. (Chapter V)

Keywords：Artificial Intelligence Security, Deep Neural Networks, Adversarial Attacks,
Adversarial Robustness, Certified Defense, Knowledge Transfer
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摘要

摘 要

近年来，深度学习技术引领的人工智能浪潮为人们的生产和生活带来了深远的

技术变革，推动了各类基于数据的模式识别领域向智能化发展。无论是在计算机视觉

领域处理非结构化的图像数据，还是在网络安全领域应对结构化的流量数据，深度

学习技术均显示出强大的应用潜力。深度神经网络作为深度学习的核心模型，具有

多层神经元结构，能够通过丰富的非线性映射捕获数据中的高级特征。大量数据上

的训练也使得深度神经网络能够在多维空间中学习到数据的潜在分布，实现对复杂、

高维数据的精确处理。因此，相较于传统机器学习模型，深度神经网络凭借强大的特

征表示和建模能力，已成为现代人工智能系统发展的关键驱动力。

然而，由于深度神经网络内部决策过程的不透明性，基于深度神经网络的人工智

能系统暴露出越来越多的安全问题。尤其是在遭受对抗攻击的威胁时，深度神经网络

鲁棒性不足的缺陷引发了业界的广泛关注和担忧。对抗攻击，又称为逃逸攻击，是一

种发生在模型部署阶段的攻击方式。攻击者试图通过输入精心设计的对抗样本，使得

模型产生错误的预测结果。这类样本是通过对原始输入进行微小且特定的扰动生成，

具有隐蔽性和针对性，以至于它们既不易被识别，又能显著降低模型的预测准确率。

对抗攻击的有效性已在许多深度神经网络的实际应用中得到证实，例如欺骗基于图

像分类模型的自动驾驶系统以及基于流量分类模型的网络入侵检测系统等。

本文聚焦于深度学习模型的完整生命周期，针对对抗鲁棒性难以泛化到未知类

型攻击、难以被形式化保证、难以在不同任务间迁移三个问题，从模型训练阶段的对

抗鲁棒性泛化、测试阶段的对抗鲁棒性验证、以及部署阶段的对抗鲁棒性迁移三个层

面，研究了面向深度神经网络的对抗鲁棒性关键技术。本文的具体研究工作包括：

1. 提出了一种基于潜在表征混合的深度神经网络对抗鲁棒性泛化方案（Latent
Representation Mixup, LarepMixup）。尽管深度神经网络可以通过专门的防御策略

增强对特定类型的对抗攻击的鲁棒性，但这些防御通常是针对已知类型的攻击方式

设计的。当面对防御训练时未见过的对抗攻击时，深度神经网络的鲁棒性往往大幅

下降。为了解决深度神经网络的对抗鲁棒性难以泛化到未知类型的对抗攻击的挑战，

本工作构造了一种无需事先了解攻击者的策略和方法的防御机制，提升了对抗鲁棒

性的适应性和泛化能力。具体来说，首先，设计了一种基于多模式流形插值的数据扩

增策略，支持以多元线性混合和二值遮罩混合两种模式混合数据流形上的潜在表征，

以此合成接近模型决策边界或符合训练数据潜在分布的混合样本。其次，提出了一

个基于语义混合样本的多目标训练算法，利用混合样本和混合标签学习平滑的深度

神经网络决策边界，增强其对边界附近扰动的鲁棒性。本文在多种基于深度神经网
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络的图像分类模型和数据集上对所提的鲁棒性泛化方案进行了实验评估。结果表明，

在白盒和黑盒场景中应对对抗攻击时，所提方法实现了像素级和表征级对抗鲁棒性

的增强，提升了鲁棒性在广泛的输入空间和潜在空间扰动上的泛化能力。（第三章）

2. 提出了一种基于多阶自适应随机平滑的深度神经网络对抗鲁棒性验证方案
（Multi-Order Adaptive Randomized Smoothing, MARS）。尽管通过评估对抗样本的攻击

成功率可以经验性地判断模型的对抗鲁棒性，但无法从理论上确保模型在所有可能

的输入扰动下保持鲁棒。特别是在面对参数空间复杂且非线性的深度神经网络时，评

估输入层的微小扰动对输出的影响变得尤为困难。为了解决深度神经网络的对抗鲁

棒性难以被形式化保证的挑战，本工作构建了一种非平凡的鲁棒性下界计算机制，近

似求解在不引发误判前提下各输入样本所允许的最大扰动范围，作为验证模型对抗

鲁棒性的鲁棒半径。具体来说，首先，提出了一个基于多阶信息的自适应随机平滑算

法，利用平滑分类器的零阶输出和一阶梯度信息，搜索多种范数度量下的鲁棒半径，

获得了比现有方法更紧的深度神经网络对抗鲁棒性下界。其次，设计了一种基于特征

敏感性的逐维鲁棒半径度量算法，通过量化输入特征各维度的鲁棒性权重计算维度

级鲁棒半径，实现了适用于具有异构特征的输入样本的细粒度对抗鲁棒性验证。本文

在多种基于深度神经网络的网络入侵检测模型和数据集上对所提的鲁棒性验证方案

进行了实验评估。结果表明，所提方法在更大的 Lp范数约束的扰动区域内成功验证

了模型的对抗鲁棒性，增强了模型针对多种对抗攻击和自然损坏的鲁棒性。（第四章）

3. 提出了一种基于对比对抗表征蒸馏的深度神经网络对抗鲁棒性迁移方案。
(Contrastive Adversarial Representation Distillation, CARD)。从零开始训练一个鲁棒的
模型通常需要大量的训练数据和高昂的计算开销，利用预训练的源模型迁移鲁棒性

到新任务可以在数据稀缺、资源有限的情况下降低学习成本。然而，源域与目标域在

数据分布和模型架构上的差异使得通用鲁棒性的捕捉和迁移变得尤为困难。为了解

决深度神经网络的对抗鲁棒性难以在不同任务间迁移的挑战，本工作构造了一种无

需依赖数据域和模型结构相似性的鲁棒性保留迁移学习机制。具体来说，首先，设计

了一种基于自适应维度对齐的蒸馏策略，引入嵌入网络对齐目标模型与源模型的输

入维度以及隐层表征维度，以支持数据域和模型变化时的知识迁移。其次，提出了一

种基于双重鲁棒感知的对比迁移学习算法，利用输入样本的对抗操纵和自然损坏视

图，捕获和学习源表征空间中的领域不变鲁棒信息，以实现通用对抗鲁棒性的迁移。

本文在多种基于深度神经网络的网络入侵检测模型和数据集上对所提的鲁棒性迁移

方案进行了实验评估。结果表明，所提方法增强了对抗鲁棒性在跨数据域和跨模型任

务间的迁移效果，在数据有限的轻量级模型中实现了领先的对抗鲁棒性。（第五章）

关键词：人工智能安全，深度神经网络，对抗攻击，鲁棒性，可验证防御，知识迁移
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Chapter I Introduction

Chapter I Introduction

In this chapter, we first introduce the background and significance of research on the
adversarial robustness of deep neural networks. Then, we summarize and analyze the related
work. Finally, we present a detailed outline of the main content of this dissertation.

1.1 Background

In recent years, the rapid development of deep learning (DL)-based artificial intelligence
(AI) has advanced the smart processes of pattern recognition and classification across various
data fields, leading to significant changes in human production and lifestyles. For instance,
DL-based image classification techniques improve the safety of autonomous driving systems
by accurately recognizing road, traffic signals, vehicles, and pedestrians [1] . DL-based net-
work traffic analysis techniques enhance the adaptability of network intrusion detection sys-
tems by effectively identifying abnormal traffic patterns associated with sophisticated cyber-
attacks [2-7] . Furthermore, DL is widely used in medical image analysis, intelligent assistants,
personalized recommendations, and more, greatly upgrading the level of intelligent services.

Deep neural networks (DNNs), as the backbone of DL, feature a multi-layered neu-
ron structure that allows them to capture high-level features in data through rich nonlinear
mappings. From simple features in the initial layers to more abstract features in the deeper
layers, the hierarchical representation learning approach helps DNNs understand complex
patterns in high-dimensional data that traditional machine learning (ML) models may over-
look [8] . Moreover, by training on large datasets, DNNs gather knowledge from experience
rather than relying on formal specifications, enabling them to learn underlying distributions
in multi-dimensional spaces. This reduces bias from artificially set knowledge and enhances
generalization on unseen data. Consequently, with powerful feature representation and mod-
eling capabilities, DNNs have become a key force in advancing modern AI systems.

However, the opacity of the internal decision-making processes of DNNs has exposed
AI systems to growing security risks, particularly from adversarial attacks, where the lack
of adversarial robustness in DNNs has raised widespread concern. Adversarial attacks, also
known as evasion attacks, occur during the deployment phase of DL models, where attack-
ers attempt to induce incorrect predictions by feeding carefully crafted adversarial examples
(AEs) into the model [9-10] . These samples are generated by applying subtle perturbations
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to the original inputs, commonly known as clean examples (CEs), making AEs difficult to
detect while significantly degrading model performance [11-15] . Such attacks have proven ef-
fective in various real-world DNN applications. For example, autonomous driving systems
based on image classification models can be easily misled by AEs, leading to dangerous mis-
classification of roads and objects [16-17] . Also, network intrusion detection systems based on
traffic classificationmodels can be bypassed byAEs, allowingmalicious activities to go unde-
tected [18-22] . The rising threat of adversarial attacks emphasizes the urgent need to strengthen
the defense capabilities of DNNs to ensure the security and reliability of AI systems.

Defenses against adversarial attacks are typically categorized into input-based andmodel-
based defense approaches. Input-based defenses focus on filtering and processing data, aim-
ing to prevent AEs from entering the model. This includes adversarial detection aimed at
identifying AEs, input reconstruction aimed at denoising AEs [23-25] , and more. Model-based
defenses focus on enhancing the adversarial robustness of a model against AEs by chang-
ing its training or optimization. This includes adversarial training aimed at incorporating
AEs for training [9,14,21] , robust optimization aimed at adding adversarial regularization terms
to limit the model sensitivity to inputs, etc. Although input-based defenses do not modify
existing models, they often increase inference latency due to additional input processing.
In contrast, model-based defenses add computational overhead during training but enhance
internal robustness, reducing their impact on inference performance and offering more sus-
tainable defenses. In this dissertation, we focus on model-based defenses aimed at improving
adversarial robustness, fundamentally boosting the defense capabilities of DNNs.

Although significant progress has been made in enhancing the adversarial robustness of
DNNs, some issues that seriously affect the reliability of DNNs still need to be solved.

• Firstly, generalizing the adversarial robustness of DNNs to unknown types of adversar-
ial attacks is a struggle. Most existing adversarial training methods rely on predefined
attack strategies and lack the adaptability to potential attacks. As a result, models that
are robust against known types of adversarial attacks often experience a decline in ro-
bustness when faced with novel attack types. Thus, improving the generalization of
the adversarial robustness of DNNs across various adversarial attacks is crucial.

• Secondly, formally guaranteeing the adversarial robustness of DNNs is challenging.
Many existing defense methods empirically assess adversarial robustness by creating
test sets of AEs and calculating attack success rates, which do not theoretically ensure
robustness against all possible perturbations. Small input perturbations can lead to
significant output changes, especially in complex and highly nonlinear DNNs, making

2



Chapter I Introduction

Robustness 
Generalization

Robustness 
Transfer

Robustness 
Certification

Data
Preparation

Model 
Training

Model
Deployment

Model
Inference

Figure 1.1 Key technologies for adversarial robustness in the lifecycle of DL models.

robustness certification particularly complicated. Therefore, developing certification
methods that provide tight guarantees of adversarial robustness is essential.

• Thirdly, transferring the adversarial robustness of DNNs across tasks is difficult. Many
existing robustness improvementmethods focus on training robustmodels from scratch,
requiring extensive data and computational resources. Transferring the robustness of
pre-trainedmodels to new tasks can lower learning costs, especially when data is scarce
and the model is lightweight. However, differences in data distributions and model ar-
chitectures between the source and target tasks complicate capturing and transferring
general robustness. Thus, exploring transfer mechanisms for adversarial robustness
across tasks is vital for enhancing dynamic defense while saving training costs.

In this dissertation, we focus on the risks posed by adversarial attacks in different DL
scenarios and investigate key techniques in the lifecycle of DL models to enhance the ad-
versarial robustness of DNNs. Our research is structured around three perspectives of ad-
versarial robustness (see Figure 1.1): robustness generalization during the data preparation
and training phases, robustness certification during testing, and robustness transfer during
deployment. Through this study, we aim to tackle critical challenges in defending against
adversarial attacks and contribute to the development of trustworthy AI.

1.2 Related Work

Despite the numerous advantages of DL techniques, the vulnerability of DNNs to ad-
versarial attacks seriously threatens the reliability of their predictions, causing widespread
concern in safety-critical fields driven by DL, such as autonomous driving and network in-
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trusion detection. For this reason, improving the adversarial robustness of DNNs has emerged
as an important topic in AI security research. Recently, challenging issues such as general-
ization, certification, and transfer strategies for adversarial robustness have been explored in
academia and industry to safeguard DNNs against a wide range of adversarial attacks.

1.2.1 Adversarial Example Generation

Adversarial examples (AEs), created by adding adversarial perturbations to the origi-
nal inputs, also known as clean examples (CEs), were first defined by Szegedy et al. [26] in
2014. They observed that carefully crafted small perturbations could cause misclassification
in image classification models based on DNNs. These adversarial perturbations are nearly
imperceptible to human vision but sufficient to make DNNs output different predicted classes
when given seemingly identical CEs and AEs, revealing their adversarial vulnerability in
high-dimensional spaces. Specifically, they generated these adversarial perturbations using
an optimization algorithm based on box-constrained Limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS). This finding exposed the security risks of DNNs against AEs
and sparked subsequent research on adversarial attacks and defenses.

Initially, the adversarial vulnerability of DNNs was attributed to deficiencies in model-
ing the local space around the training data, as DNNs rely on large training data that can’t
cover all possibilities in the input space, leaving gaps for AEs [26] . Later, Goodfellow et
al. [9] further explained this vulnerability through the perspective of local linearity of DNNs.
Despite their nonlinear nature, DNNs behave linearly in local regions, like the activation
function of the Rectified Linear Unit (ReLU), which is piecewise linear. This local linear-
ity causes small perturbations in the input space to accumulate and amplify through model
layers, eventually resulting in significant output changes. In 2015, they introduced the Fast
Gradient Sign Method (FGSM), a simple and fast AE generation algorithm based on the
gradient of the loss function.

Afterward, Papernot et al. [11] noticed the flaws of DNNs and proposed the Jacobian-
based Saliency Map Attack (JSMA) to generate AEs based on the Jacobian matrix of the
output function. Moosavi-Dezfooli et al. [12] designed a more precise algorithm, DeepFool,
for minimum adversarial perturbation generation using orthogonal projection on the deci-
sion boundary. In 2017, Kurakin et al. [27] demonstrated the existence of real-world AEs
by designing two iterative versions of FGSM: the Basic Iterative Method (BIM) for gener-
ating non-targeted AEs without desired classes and the Iterative Least-Likely Class Method
(ILLCM) for generating targeted AEswith desired classes. They validated adversarial attacks
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using photos of printed AEs. One year later, Kurakin et al. [14] evolved the simple clipping
operation for perturbations exceeding the limit in BIM into a projection operation, proposing
an AE generation algorithm, projected gradient descent (PGD), to ensure that the generated
perturbations are always within the allowed perturbation range.

Carlini and Wagner et al. [13] introduced three new AE generation methods for the l1-
norm, l2-norm, and l∞-norm distance metrics based on the optimization, seeking to mini-
mize the distance between AEs and original inputs while ensuring the model misclassifies
the inputs. At the same time, they proposed the concept of high-confidence AEs, which
are designed to be strongly misclassified by the original model. Unlike being barely clas-
sified as the incorrect label, these AEs are much more likely to be classified as targets than
others. CW attacks are known for their precision, often bypassing many defenses that resist
gradient-based attacks like PGD.Moosavi-Dezfooli et al. [28] proposed a universal adversarial
perturbation algorithm, which generates a global perturbation that misclassifies most input
samples by iteratively optimizing across different samples. Baluja et al. [29] proposed a faster
AE generation method, the Adversarial Transformation Network (ATN), which can generate
perturbations in the Perturbation ATN mode and can also generate the low-dimensional ad-
versarial encodings of AEs in the Autoencoding ATN mode and map them to AEs through
the decoder. Sarkar et al. [30] developed two algorithms, UPSET (Universal Perturbations
for Steering to Exact Targets) and ANGRI (Antagonistic Network for Generating Rogue Im-
ages), for generating targeted AEs with specific desired labels, focusing on the global and
sample-specific effectiveness of adversarial perturbations, respectively. In 2019, Su et al. [31]

conducted a pioneering study on generating AEs by modifying only a single pixel in extreme
cases. They proposed a one-pixel adversarial attack, which searches the position and color of
pixels through differential evolution to find a single pixel that maximizes the prediction error.
Croce et al. [32] proposed AutoAttack in 2020, an ensemble of diverse parameter-free attacks,
including two white-box PGD versions, white-box FAB [33] , and black-box [34] attacks.

1.2.2 Adversarial Robustness Generalization

In recent years, robust training methods, such as adversarial training and mix-up train-
ing, have been widely studied to enhance the adversarial robustness of DNNs and generalize
to unknown types of adversarial attacks.

Adversarial Training. In the first work on AEs, L-BFGS [26] , Szegedy et al. found that
back-feeding AEs crafted from the clean training set to training can improve the generaliza-
tion of the resulting models, strengthening the robustness against AEs crafted from the clean
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test set. Soon after, Chalupka et al. [35] proposed to enhance adversarial robustness against
L-BFGS and generalization on out-of-distribution (OOD) data by learning truly impactful
features, also known as causal features, which are less sensitive to noise and perturbations.
In 2015, Goodfellow et al. [9] first formally defined the FGSM-based adversarial training (AT),
which enhanced the adversarial robustness of the model against FGSM by training on a mix-
ture of FGSM AEs and CEs. Subsequently, Huang et al. [36] formalized the learning process
of previous heuristic AT as a min-max problem, making the model inherently robust to AEs.
Shaham et al. [37] proposed the concept of robust optimization, achieving simultaneous ad-
versarial perturbation generation and model parameter updates through alternating two goals
between the maximum and minimization.

A variety of known-type attacks can be used for AT to improve the generalization of
the adversarial robustness. Moosavi-Dezfooli et al. [12] proposed the DeepFool-based AT,
using DeepFool AEs to expand the training set, surpassing the adversarial robustness of the
model learned by FGSM-AT. Kurakin et al. [38] designed and compared FGSM-AT, BIM-
AT, and ILLCM-AT, finding that the transferability of multi-step AEs (BIM and ILLCM)
was slightly lower than that of single-step AEs (FGSM), and that the AT defense model per-
formed better against AEs than CEs. In 2018, Madry et al. [14] introduced the PGD into AT.
By optimizing the parameters to minimize both the loss on CEs and the loss on PGD AEs,
PGD-AT significantly improves the adversarial robustness against FGSM, PGD, and CW.
Due to its wide effectiveness, PGD-AT has set a benchmark for evaluating the adversarial
robustness of DNNs. In 2019, Zhang et al. [39] proposed Tradeoff-inspired Adversarial De-
fense via Surrogate-loss minimization (TRADES). This AT approach addresses the tradeoff
between adversarial robustness and regular predictive performance by introducing a regular-
ization term that penalizes the difference between outputs on CEs and AEs.

AT defenses are further divided into off-manifold AT and on-manifold AT [40] , aiming to
involve off-manifold AEs and on-manifold AEs to generalize model robustness. Lin et al. [41]

proposed PGD-based Dual Manifold Adversarial Training (PGD-DMAT) in 2020, which
boosts the regular predictive performance on CEs and robustness against latent-space adver-
sarial attacks (a.k.a. on-manifold attacks, like OM-FGSM and OM-PGD) by conducting AT
in the latent space of inputs (a.k.a. on-manifold AT). Meanwhile, it improves robustness
against input-space adversarial attacks (a.k.a. off-manifold attacks, like FGSM and PGD)
through AT in the input space (a.k.a. off-manifold AT). However, AT always relies on prior
knowledge of the attack algorithm, which limits the generalization of the resulting robustness
to new adversarial attacks not seen during training.
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Mixup Training. In 2017, Zhang et al. [42] proposed a novel training algorithm, input-
space mixup training (InputMixup), from the perspective of data augmentation, which gen-
erates mixed examples (MEs) by convexly combining two samples and their labels from
the training set and then feeding them into the DNN for training. InputMixup enables the
model to learn transition regions between samples in the input space, improving generaliza-
tion and robustness against unseen adversarial attacks without introducing AEs. Afterward,
many works extending from InputMixup were studied, mainly divided into two types: linear
combination-based and binary mask combination-based mixup training.

In linear combination-based mixup, training samples are combined by linear interpo-
lation, which can enhance the model performance in smooth transition areas between sam-
ples. In 2020, Lee et al. [43] proposed Adversarial Vertex Mixup (AVmixup) to mitigate the
overfitting of adversarial features in adversarial training. By convexly combining the clean
example and the adversarial vertex, which is located in the same direction as the adversarial
example but several times farther away, the AVmixup algorithm generates MEs for training.
This improves the generalization of adversarial robustness and eases the trade-off between
regular predictive performance and adversarial robustness. Inspired by Mixup, Pang et al.
[44] extended mixup training to Mixup Inference (MI) performed during the testing phase.
By mixing the input test samples with other clean samples, the MI algorithm reduces the
adversarial perturbations that may be contained in the input test samples. Specifically, MI
is subdivided into two modes: MI with Predicted Label (MI-PL), performed using the ini-
tial predicted label on the input test sample, and MI with Other Labels (MI-OL), operated
with labels other than the predicted label. These two strategies focus on the most confident
prediction and the generalization to unseen adversarial examples, respectively.

In binary mask combination-based mixup, binary masks composed of 0 and 1 are used
to determine the source of each local space, which can generate more complexMEs. In 2019,
Yun et al. [45] proposed the first binary mask combination-based mixup algorithm, CutMix, to
address issues like violent black pixel coverage and random noise patches in regional dropout
by combining training samples with masks. Later, Kim et al. [46] addressed the virtuality issue
in synthetic mixed examples by proposing Puzzle Mixup (PuzzleMixup), a mixup training
algorithm that uses the salient and statistical information of clean samples to optimize mixed
sample space, achieving superior adversarial robustness compared to earlier binary mask
combination-based mixup methods. However, mixed examples created in the input space
are perceptually unnatural and can’t be considered samples drawn from the underlying data
distribution. Moreover, it is challenging to effectively use input-space interpolation ratio
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information in the feature space to modify the decision boundary.
Guo et al. [47] studied the interpretability of mixup training. From the perspective of off-

manifold regularization, mixup training is interpreted as imposing local linear constraints on
the input space beyond the data manifold. However, they expressed concerns about manifold
intrusion, emphasizing that MEs can invade regions of the input space not represented by the
original training data, falling outside the true data manifold. This may lead to less effective
generalization as the model may learn to fit mixed data points that do not reflect the underly-
ing data distribution. To this end, they proposed an adaptive version of MixUp (AdaMixUp)
to automatically learn the mixup parameters, enhancing the effectiveness of mixup train-
ing. To smooth the decision boundary of DNNs, Verma et al. proposed to combine fea-
ture maps of different inputs in the random selected hidden layer of a classifier via linear
combination-based ManifoldMixup [48] and binary mask combination-based PatchUp [49] . In
this way, compared to the input-space interpolation ratio information, hidden representation-
space interpolation ratio information provides a more appropriate guiding signal for smooth-
ing the decision boundary. Unfortunately, their work oversimplifies the data manifold as
feature maps in the DNN, failing to capture the underlying geometric structure formed by the
distribution of data points in a high-dimensional feature space.

Although exact data manifold learning has not been explored in mixup training, work
on latent interpolation in unsupervised learning has made essential contributions to this. In
2018, Liu et al. [50] proposed a latent space interpolation (LSI) method for data augmenta-
tion. They used an adversarial autoencoder (AAE) [51] to learn feature representations in
the latent space and generated new training samples through linear interpolation, which im-
proved the generalization of DNNs. Sainburg et al. [52] introduced Generative Adversarial
Interpolative Autoencoding (GAIA), an adversarial training method based on latent space
interpolation. GAIA uses an autoencoder (AE)-generative adversarial network (GAN) archi-
tecture to capture data representations in the latent space and perform convex combinations.
Compared to input-space interpolation, the samples synthesized by latent-space interpolation
are closer to the underlying data distribution and, thus, more challenging to distinguish from
real data. Berthelot et al. [53] pointed out that synthetic samples decoded by autoencoder
from the convex combination of latent representation blend input features and proposed a
consistency regularization algorithm, Adversarially Constrained Autoencoder Interpolation
(ACAI), to enhance the realism of interpolated outputs. Cemgil et al. [54] proposed a regu-
larization method for variational auto-encoder (VAE) [55] based on a selection mechanism,
which can learn representations in the latent space that are insensitive to adversarial pertur-
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bations. They demonstrated the positive significance of latent-space data augmentation for
robust representation learning. Beckham et al. [56] proposed adversarial mixup resynthesis
(AMR) for latent representation mixup, which utilizes an AE-GAN architecture to generate
representations and mix them under two modes: linear and binary mask combination.

Mixup training improves the generalization of adversarial robustness against unknown
types of adversarial attacks, as it does not rely on specific AE generation algorithms. How-
ever, existing mixup training methods primarily address off-manifold (input-space) adver-
sarial attacks, neglecting on-manifold (latent-space) attacks occurring on the data manifold.
Additionally, the limited expressivity of classifier hidden layers restricts their ability to cap-
ture the complexity of the underlying manifold, while mixing entangled features may fail
to yield realistic input samples, potentially disrupting boundary learning. Furthermore, the
necessary modifications to hidden layer architectures in existing works reduce the flexibility,
complicating the application of these mixup training methods across various DNNs.

1.2.3 Adversarial Robustness Certification

Against adversarial attacks, heuristic strategy-driven empirical defenses, such as adver-
sarial training and mixup training, can usually be adaptively attacked again [57] and cannot
verify the resulting robustness. To deal with the endless arms race of adversarial attack and
defense, research on the adversarial robustness of DNNs has gradually shifted to certified
defense represented by robustness certification [58] .

Robustness Certification. Such a defense aims to calculate a certified robust radius
(a.k.a. certified radius) for each input as a robustness guarantee for the DNN. The radius
is defined as the maximum range of perturbation in the input that does not cause the out-
put label to change. This formal guarantee ensures that, within the specified perturbation
range bounded by a certified radius measured by the lp norm, no AE can cause the model to
misclassify the input. By doing so, certified defenses not only provide theoretical robustness
guarantees but also serve as a critical metric for evaluating the robustness of DNNs against all
possible adversarial manipulations. When using different robustness certification algorithms
for the same model and input, a larger certified radius indicates a tighter robustness guarantee
provided by the robustness certification method. When different models are certified on the
same input with the same robustness certification algorithm, the larger the certified radius
obtained, the better the certified robustness of the model.

There are two types of robustness certification approaches: complete certification and
incomplete certification. The relationship between the certified radius and the exact robust
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radius of the model on a specific input determines whether the robustness certification is
complete or incomplete. Complete certification provides a certified radius equal to the exact
robust radius, and incomplete certification provides a certified radius as a lower bound of the
exact robust radius. Therefore, when complete certification returns failed certification for a
sample, it guarantees the existence of an AE nearby. When incomplete certification returns
failed certification, it does not guarantee this, as the model could be more robust than the
certified radius suggests. From another perspective, robustness certification can also be di-
vided into deterministic and probabilistic approaches. Deterministic certification guarantees
to produce not certified when the input is non-robust, whereas probabilistic certification does
so with a certain probability. Most complete certification methods are deterministic, while
incomplete certification encompasses both deterministic and probabilistic types [58] .

Complete Certification. Complete certification provides strong robustness guarantees
by ensuring that no AEs are within a certified radius around any input point. In 2017, Cheng
et al. [59] utilized mixed integer linear programming (MILP) constraints to encode the non-
linear ReLU operations and the whole model, precisely encoding the certification problem as
aMILP problem. Tjeng et al. [60] extended themodel size supported byMILP-based complete
certification to convolutional networks, achieving computational speedups through a pre-
solve algorithm. However, MILP-based methods mainly apply to medium-sized models and
are difficult to scale to DNNs.

The boundary propagation-based approach improves the scalability of complete certifi-
cation on DNNs. In 2018, Zhang et al. [61] proposed CROWN, a general framework to certify
the robustness of DNNs through bound propagation. By propagating the input boundary in
the network, the upper and lower bounds of each neuron output are calculated layer by layer,
thereby obtaining the output bound of the entire network. CROWN bounds activation func-
tions with linear and quadratic functions, allowing it to tackle DNNs with general activation
functions. Gowal et al. [62] simplified the bounding technique in CROWN to interval bound
propagation (IBP), which applies linear propagation at each layer, fasting the certification but
leading to loose bounds. Later, Zhang et al. [63] introduced CROWN-IBP, which combines
the fast IBP bounds in a forward bounding pass with a tight CROWN bound in a backward
bounding pass, achieving better computational performance than IBP baselines. Xu et al. [64]

developed an automatic framework to generalize CROWN to general computational graphs,
enabling certification on any DNN structure. Lyu et al. [65] proposed a relaxed version of
CROWN, linear bound propagation (LBP), which can certify large DNNs and obtain lower
certified errors than IBP. In 2021, Wang et al. [66] introduced a branch-and-bound strategy to
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the bound propagation-based CROWN framework, proposing β-CROWN. In 2022, Zhang et
al. [67] proposed GCP-CROWN, which enhances the strength and scalability of CROWN by
introducing a general cutting plane to the bound propagation. In 2024, Zhang et al. [68] ana-
lyzed the theoretical upper bound of certified robust accuracy using Bayes error, proving that
robustness inherently reduces accuracy. Complete certification provides strict robustness
guarantees but is computationally complex, making it less applicable to high-dimensional
inputs and large-scale models due to the time and resources required.

Incomplete Certification. Incomplete certification, which uses an approximation of the
exact robust radius of the model as the certified radius, avoids the NP-complete challenge of
computing the exact robust radius of a DNN in complete certification [58,69] . However, a no-
table drawback of incomplete certification is that the robustness guarantee provided is loose;
that is, the provided certified radius is far from the exact robust radius. Many approaches
have been proposed to upgrade incomplete certification algorithms for image classifiers to
compute the non-trivial certified radius for DNNs.

Deterministic incomplete certification mainly involved linear relaxation-based and Lip-
schitz constant-based certification approaches. Most linear relaxation-based approaches rely
on activation polytope [70-74] , which use activation values of the hidden layers of the DNN to
form the vertices of the polytope, and calculating the volume and surface area of the poly-
tope to evaluate the robustness. Lipschitz constant-based approaches aim at computing a
tight Lipschitz bound for general DNNs to quantify the change in the model’s output under
input perturbations. Since the global Lipschitz constant is usually too loose, Lee et al. [75]

improved it by performing fine-grained analysis of the convolutional layers. Fazlyab et al. [76]

computed the local Lipschitz bounds by posing the Lipschitz constant estimation problem as
a semidefinite program (SDP), increasing the estimation accuracy.

Probabilistic incomplete certification mainly includes differential privacy-based and
randomized smoothing-based certification approaches. Most differential privacy (DP)-based
approaches usually use the first-order derivative of the output function. In 2019, Lecuyer et
al. [77] first introduced a DP mechanism to add noise to hidden layers of the model during
training and regularized the output, providing the l2 bounded robustness guarantee to the
model. Later, Phan et al. [78] proposed a scalable certification method that combines DP with
adversarial training, where DP is applied to the gradient update process by adding noise dur-
ing model training, thereby limiting the sensitivity of the model to data points.

An ideal certified defense against adversarial attacks should be model agnostic and ap-
plicable to various DL models without relying on their specific structures. Randomized
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smoothing (RS)-based approaches are the most competitive for tight and architecturally scal-
able certification and can be categorized into zero-order and first-order information-based
techniques. In 2019, Cohen et al. [79] innovatively proposed vanilla randomized smoothing
(VRS), transforming any classifier into a smoothed version. The smoothed classifier makes
several predictions on noisy versions of the input with Gaussian noise and outputs the major-
ity vote as its final decision. Later, Lee et al. [69] expand the Gaussian-based RS across broad
classes of distributions, offering robustness guarantees against l0 norm-bounded attackers.
In 2022, Hao et al. [80] proposed generalized randomized smoothing (GSmooth), a unified
framework for certifying robustness against general semantic transformations. Unlike most
RS works that only use the zero-order information, i.e., the output prediction of the smoothed
classifier, Mohapatra et al. [81] proposed the First Order-based Randomized Smoothing (FRS),
which uses the first-order gradient information of the smoothed classifier together with the
zero-order output information to calculate a tighter certified radius bounded by l2 norm.

Existing randomized smoothing (RS) methods are mainly designed for DNNs with ho-
mogeneous input features, like image classifiers. However, they cannot be applied to DNNs
with heterogeneous input features, such as network traffic classifiers. In 2023, Wang et al. [82]

introduced Boundary-Adaptive Randomized Smoothing (BARS), the first robustness certifi-
cation method aimed to provide l2 robustness guarantees for network traffic classifiers. How-
ever, since it relies only on zero-order information, its l2 norm-bounded certified radius may
not be tight enough and lacks support for other norm-bounded certificates.

1.2.4 Adversarial Robustness Transfer

Robustness-preserving transfer learning (TL) methods, such as adversarial fine-tuning
and adversarial distillation, are the main techniques for transferring adversarial robustness
between DNNs. These approaches aim to ensure that the target model performs well on
regular samples and remains robust against adversarial attacks in the target domain.

Adversarial Fine-tuning. In 2019, Hendricks et al. [83] proposed adversarial fine-tuning
(AFT) to enhance the robustness of a target model by fine-tuning a pre-trained robust source
model using target-domain adversarial examples. However, compared with conventional
fine-tuning, this mechanism reduces the accuracy on the target domain clean samples [84] .
To balance the robustness with regular predictive performance, Hafahi et al. [85] proposed a
robustness-preserving TL framework, Freeze Robust Feature Extractor (FRFE), to fine-tune
the robust source model using only clean data. In 2021, Fan et al. [86] introduced ADCer-
sarial Contrastive Learning (ADVCL) to explore AFT within self-supervision, avoiding re-
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liance on labeled data. Yamada et al. [87] proposed Fixed-Feature Transfer Learning (FFTL)
to tackle robustness against common image corruptions like noise and blur. In 2023, Liu et
al. [88] developed a finetuning framework, TwoWIng NormliSation (TWINS), which incor-
porated vanilla AFT with dual batch normalization (BN) [89] for robustness in downstream
tasks, leveraging the statistics information from a frozen BN layer. However, existing AFT
methods that optimize adversarial and generalization objectives can lead to gradient direc-
tion divergence [90] . Moreover, except for FRFE [85] , none of these methods consider the data
scarcity problem in the target domain. They mainly fine-tune models pre-trained on complex
source domains like ImageNet-1000 for simpler target domains like CIFAR-10, neglecting
the challenging task of adapting to target domains with more categories, which is crucial for
network intrusion detection that often faces emerging threats. Since AFT typically adapts a
pre-trained model by adjusting weights and output dimensions, it cannot transfer robustness
to a target model with significant structural differences.

Adversarial Distillation. Adversarial distillation (AD) [91] , as known as vanilla adver-
sarial distillation (VAD), proposed by Goldblum et al. in 2020, aims to transfer robustness
from a source to a smaller target model by minimizing Kullback-Leibler (KL) divergence
between teacher and student outputs on adversarial images. Later, Muhammad et al. [92] pro-
posed MixACM, which aims to distill activated channel maps of hidden layers on mixed
samples. Considering teachers pre-trained on source-domain adversarial data may become
unreliable in predicting target-domain adversarial data queried by students, Zhu et al. [93] de-
signed introspective adversarial distillation (IAD) to encourage student models to trust their
teachers for adversarial robustness partially. Zi et al. [94] proposed Robust Soft Label Ad-
versarial Distillation (RSLAD) to train robust small student models, which exploits the ro-
bust soft labels produced by an adversarially-trained robust large teacher model to guide the
student’s learning on both CEs and AEs. In 2022, Maroto et al. [95] developed Adversarial
Knowledge Distillation (AKD), a new AD framework to boost the robustness by adversari-
ally training a student on a mixture of ground truth labels and teacher outputs. Bai et al. [96]

introduced Guided Adversarial Contrastive Distillation (GACD), which uses contrastive dis-
tillation based on AEs to generate robust target models on CIFAR-10. In 2023, huang et al. [97]

proposed a new AD framework, Adaptive Adversarial Distillation (AAD), further boosting
the robustness of students by dynamically updating AEs in the distillation process. However,
these AD methods do not fully interact with the teacher models to minimize prediction dis-
crepancies between source and target models, limiting the robustness and regular predictive
performance inherited by the student model. In addition, they focus more on cross-model
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distillation in the same learning task, ignoring TL scenarios across data domains and the
scarcity of training data in the target domain.

1.3 Our Contributions

In this dissertation, we focus on the threats from adversarial attacks in deep learning
(DL) scenarios and explore three key issues: generalizing the adversarial robustness of DNNs
to unknown attack types, providing formal guarantees for the adversarial robustness of DNNs,
and transferring the adversarial robustness of DNNs across various tasks. We study three key
techniques of adversarial robustness in DNNs, including generalization, certification, and
transfer. Our primary contributions are as follows:

1. We propose Latent Representation Mixup (LarepMixup), a robust training frame-
work to enhance the generalization of adversarial robustness in DNNs. Although adversarial
training can strengthen robustness against specific attacks, it struggles to generalize to new or
unseen ones. To address this, we present amixup training-based defensemechanism that does
not depend on prior attacker knowledge. Initially, we develop a data augmentation approach
based on dual-modemanifold interpolation, creatingmixed samples near decision boundaries
or following the underlying distribution through convex and binary mask mixing. Then, we
design a multi-label training algorithm using mixed semantic samples and mixed labels to
smooth the decision boundary of the DNN, enhancing robustness against perturbations near
the boundary. Experiments on various image classifiers and datasets demonstrate that our
proposed method improves both pixel-level and representation-level robustness in white-box
and black-box scenarios, enhancing generalization of robustness across diverse input and la-
tent space perturbations (e.g., FGSM, PGD, AutoAttack, DeepFool, CW, OM-FGSM, and
OM-PGD) compared with the state-of-the-art (SOTA) robust training methods (e.g., PGD-
AT, PGD-DMAT, InputMixup, CutMix, PuzzleMixup, ManifoldMixup, and PatchUp).

2. We propose Multi-order Adaptive Randomized Smoothing (MARS), a certified de-
fense framework to enhance the tightness of adversarial robustness certification in DNNs.
While the robustness of DNNs can be empirically evaluated by assessing the attack success
rate of adversarial attacks, it doesn’t theoretically guarantee robustness against all input per-
turbations. To address this, we present a probabilistic incomplete certification method to
calculate non-trivial robustness lower bound, estimating the certified robust radius for each
input sample to avoid misclassification. We first design an adaptive randomized smooth-
ing algorithm that uses zero-order and first-order information of the smoothed classifier to
calculate robust radii, offering tighter certified radii than existing methods. Additionally, we
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propose a dimension-wise robust radius calculation algorithm based on the sensitivity of each
feature dimension, allowing for fine-grained robustness certification of heterogeneous input
features. Experiments on various network intrusion detectors (e.g., CADE and ACID) and
datasets (e.g., CSE-CIC-IDS-2018-CADE and CSE-CIC-IDS-2018-ACID) demonstrate that
our proposed method effectively certifies adversarial robustness in larger lp norm-bounded
perturbation regions compared with the SOTA traffic-specific certification BARS, image-
specific certification VRS, and FRS, enhancing robustness against diverse adversarial attacks
(e.g., l∞-PGD, l2-PGD, l1-EAD) and natural corruption (e.g., Latency and PacketLoss).

3. We proposeContrastiveAdversarial RepresentationDistillation (CARD), a robustness-
preserving transfer learning framework to transfer the adversarial robustness of DNNs across
different tasks. Training a robust model from scratch typically requires extensive datasets
and substantial computational resources. Transferring robustness from a robust pre-trained
source model to new tasks can mitigate these demands but is challenging due to differences
in data distribution and model structures, making universal robustness hard to capture. This
work develops a robustness transfer mechanism for robustness transfer that isn’t constrained
by domain or model similarities. First, we design a distillation strategy using adaptive di-
mensional alignment, aligning input and hidden representation dimensions between target
and source models to facilitate knowledge transfer despite data domain and model changes.
Moreover, we propose a contrastive transfer learning algorithm with dual robustness-aware
views, capturing domain-invariant robustness through adversarial manipulation and natural
corruption views for effective transferring. Experiments on various network traffic classifiers
(e.g., WideResNet-34-10, ResNet-18, and MobileNet) and datasets (e.g., UNSW-NB15 and
NSL-KDD) demonstrate that our proposedmethod enhances the transferability of adversarial
robustness across data domains and model structures, achieving superior adversarial robust-
ness against l∞ PGD attacks in lightweight models with limited training data compared with
standard fine-tuning and distillation as well as SOTA adversarial fine-tuning (e.g., FRFE and
TWINS) and adversarial distillation (e.g., VAD and AAD) in binary and multi-classification.

1.4 Organization

This dissertation contains six chapters in total, detailing the key techniques for the ad-
versarial robustness of DNNs against adversarial attacks. The overall content structure of this
dissertation is shown in Figure 1.2, and the specific content is organized as follows:

In Chapter I, we first introduce the background and significance of studying the adver-
sarial robustness of DNNs. Then, we summarize the related work on adversarial example
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Chapter Content Motivation Evaluated DL Scenarios

Research 
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Chapter 3 
Adversarial 
Robustness 

Generalization
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LarepMixup Homogeneous feature-based 
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Chapter 4
Adversarial 
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Chapter 5
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different tasks
CARD

Innovation

Heterogeneous feature-based 
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Research on Key Techniques for Adversarial Robustness of Deep Neural Networks

Figure 1.2 Organizational structure of this dissertation.

generation, adversarial robustness generalization, certification, and transfer, highlighting the
challenges existing methods face. Next, we briefly outline the main contributions of our
work. Finally, we describe the organizational structure of this dissertation.

In Chapter II, we cover the preliminaries of adversarial attacks and defenses for DNNs.
First, we introduce the basic structure, working principle, and application scenarios of DNNs.
Then, we present the attack types, attack principles, and threat scenarios of adversarial at-
tacks DNNs face. Finally, we introduce the basic concepts, enhancement techniques, and
evaluation methods of adversarial robustness.

In Chapter III, we study the generalization technique for adversarial robustness of DNNs
and propose a robust training framework, Latent Representation Mixup (LarepMixup).
First, we introduce a developed data augmentation approach based on dual-mode manifold
interpolation, generating mixed samples near the decision boundary or following the under-
lying distribution. Then, we present a designed multi-label training algorithm using mixed
semantic samples and mixed labels to smooth the DNN decision boundary. Finally, we show
experimental results on various image classifiers and datasets, demonstrating that the pro-
posed method improves the generalization of adversarial robustness across various input and
latent space perturbations in both white-box and black-box scenarios.

In Chapter IV, we study the certification technique for adversarial robustness of DNNs
and propose a certified defense framework, Multi-order Adaptive Randomized Smoothing
(MARS). First, we introduce a designed adaptive randomized smoothing algorithm that lever-
ages zero-order and first-order information to calculate robust radii, providing tighter lower
bounds of robustness than existingmethods. Then, we present a proposed dimension-wise ro-
bust radius calculation algorithm based on the sensitivity of each feature dimension, enabling
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fine-grained robustness certification for heterogeneous input features. Finally, we show ex-
perimental results on various network intrusion detectors and datasets, demonstrating that
the proposed method certifies robustness in larger perturbation regions and improves certi-
fied robustness against diverse adversarial attacks.

In Chapter V, we study the transfer technique for adversarial robustness of DNNs and
propose a robustness-preserving transfer learning framework, Contrastive Adversarial Rep-
resentation Distillation (CARD). First, we introduce a designed distillation strategy based on
adaptive dimensional alignment, aligning input and hidden representations between target
and source models. Then, we present a proposed contrastive transfer learning algorithm
based on dual robustness-aware views, which captures domain-invariant robustness through
adversarial manipulation and natural corruption views. Finally, we show experimental results
on various network intrusion detectors and datasets, demonstrating that the proposed method
enhances the transferability of adversarial robustness across data domains and model struc-
tures, achieving leading adversarial robustness for lightweight models with limited data.

In Chapter VI, we conclude this dissertation and discuss future directions. We review
the main contributions, summarize the limitations, and outline possible follow-up work.
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Chapter II Preliminaries

In this chapter, we present some preliminaries for this dissertation. We begin by pre-
senting the basic structure, training and inference principles, and application contexts of deep
neural networks (DNNs). Following that, we offer an overview of adversarial attacks, cov-
ering various attack types, attack principles, and the threat scenarios that DNNs encounter.
Finally, we introduce the basic concepts, enhancement techniques, and evaluation methods
for adversarial robustness.

2.1 Deep Neural Networks

2.1.1 Basic Structure

A deep neural network (DNN) is a type of deep learning (DL) model inspired by the
structure of neurons in the human brain. It typically consists of multiple layers between the
input and output, comprising an input layer, multiple hidden layers, and an output layer. The
input layer handles the task of receiving data, such as images or text. The hidden layers apply
activation functions for nonlinear transformations (e.g., ReLU or sigmoid). The output layer
produces the final result, which could be a class label for classification tasks or a prediction
for regression tasks. In this dissertation, we focus on DNN-based classification tasks.

DNNs are often used to model complex relationships in high-dimensional data by learn-
ing abstract features through multiple layers. For a given input x ∈ X , the DNN is rep-
resented as a classification function fθ: X → Y , where the model’s output fθ(x) is a C-
dimensional probability vector, referred to as the confidence score vector, which indicates
the confidence levels of x across all C classes. Formally, a DNN with L layers is expressed
as Eq. (2-1):

fθ(x) = f(x; θ) = fL(fL−1(...f1(x))) (2-1)

where x represents the input, θ refers to the model’s parameters, f is the learned prediction
function, and fi signifies the transformation carried out by the i-th layer.

Each transformation fi typically involves a linear operation combined with a nonlinear
activation function, commonly formulated as Eq. (2-2).

fi(x) = σ(Wi · x+ bi) (2-2)
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whereWi is the weight matrix of the i-th layer, bi is the bias term of the i-th layer, and σ is a
nonlinear activation function, such as ReLU, sigmoid, softmax, etc.

2.1.2 Training and Inference Principles

The working principle of DNN models consists of two main phases: training before
deployment and inference after deployment.

Model Training Phase. The training process of the model fθ typically involves opti-
mizing the model parameters θ, which consist of weightsW and biases b, by using a training
set Dtrain to minimize a specific loss function L, such as Cross-Entropy or Mean Squared
Error (MSE). Specifically, during the training of a classifier with C categories, fθ is super-
vised to map each sample x inDtrain to a C-dimensional confidence score vector fθ(x) with
minimal loss for the C-dimensional one-hot vector corresponding to its ground-truth label
ytrue ∈ [C] ≡ {1, ..., C}. This can be formulated as a minimization problem in Eq. (2-3):

min
θ

E(x,ytrue)∼Dtrain
[L(fθ(x), ytrue)] (2-3)

where (x, ytrue) are the input-output pairs from the training dataset Dtrain, θ represents the
trainable parameters of the model, L indicates the loss function，and E denotes the expec-
tation function.

To minimize the prediction error assessed by the loss function, gradient-based opti-
mization techniques like Stochastic Gradient Descent (SGD) are commonly employed to it-
eratively update the model parameters θ using backpropagation. Taking optimization with a
single training example as an instance, the updating of θ can be expressed as Eq. (2-4):

θ = θ − η∇θL(fθ(x(i)), y
(i)
true) (2-4)

where, η signifies the learning rate, L(fθ(x(i)), y
(i)
true) represents the loss function calculated

for an input-output pair (x(i), y
(i)
true) randomly selected from the training dataset Dtrain, and

∇θL(fθ(x(i)), y
(i)
true) indicates the gradient of the loss function L(fθ(x(i)), y

(i)
true) concerning

the parameters θ, pointing in the direction of the steepest increase of the loss function. During
training, the goal is to minimize the value of the loss function. By subtracting the gradient
∇θL(fθ(x(i)), y

(i)
true), the parameters θ are updated in the direction where the loss function

L(fθ(x(i)), y
(i)
true) decreases. Another common form of Eq. (2-4) in related work is shown

in Eq. (2-5), which expresses the same meaning. In this dissertation, we uniformly use L to
denote the loss function.

θ = θ − η∇θJ(θ; x
(i), y

(i)
true) (2-5)
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where ∇θJ(θ; x
(i), y

(i)
true) represents the gradient of the loss function J(θ; x(i), y

(i)
true) com-

puted based on (x(i), y
(i)
true)) w.r.t the model parameters θ.

Model Inference Phase. The inference process involves applying the trained model to
predict the class for new, unseen inputs, keeping the model structure unchanged and utilizing
the parameters learned during training. Formally, the base classifier F for inference built on
the trained DNN model fθ is defined in Definition 1.

Definition 1 (Base Classifier). Given a DNN model fθ that maps input x to a C-dimensional
confidence score vector fθ(x), predicted class y output by a base classifier F is defined as:

y = F (x) = argmax
i∈[C]

fθ(x)i (2-6)

where fθ(x)i denotes the confidence score output by fθ on the i-th category for the input x.

In this dissertation, the base classifier is defined as the classifier trained using the stan-
dard process without incorporating robust defense training. The output y of the base classifier
represents the index of the highest value in the confidence score vector generated by themodel
fθ; that is, the model selects the class with the highest confidence score as its predicted label.

2.1.3 Application Scenarios

DNNs have diverse application scenarios across various domains. In computer vision
(CV), they excel in image classification, object detection, and segmentation. In natural lan-
guage processing (NLP), they enable sentiment analysis, machine translation, and text gen-
eration. They are also utilized in cybersecurity for intrusion detection, malware analysis,
and phishing detection. Their ability to learn complex patterns from large datasets makes
DNNs valuable tools for both supervised and unsupervised learning tasks. This disserta-
tion focuses on classification tasks with supervised learning. Two application scenarios are
mainly explored: image classification with homogeneous input features and network traffic
classification with heterogeneous input features.

Image Classification. DNNs have been extensively researched and utilized for image
classification tasks, aiming to accurately assign input images to predefined labels based on
their visual features. In image classification, each image sample from the dataset is repre-
sented as a multi-dimensional array of pixel values, specifically aH×W ×C tensor, where,
H represents the height, W ) signifies the width, and C indicates the color channels. The
feature dimensions of the input image vector x ∈ X := RH×W×C for the image classifier
are homogeneous. Each feature dimension consistently captures a specific attribute of the
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Figure 2.1 Application of DNN-based network traffic classifier in network intrusion detection (NID).

image, such as the pixel values in the RGB channels representing color intensities, which are
all measured on a similar scale, ranging from 0 to 255 or normalized between 0 and 1.

The homogeneity of feature dimensions in image samples allows DNNs, particularly
convolutional neural networks (CNNs), to learn spatial hierarchies and patterns effectively.
the DNNmodel fθ: X →Y behind the image classifierF is trained according to Eq. (2-3) and
used for inference according to Eq. (2-6). The uniform structure facilitates the application of
CNN filters that can capture spatial relationships, such as edges, textures, and shapes, across
different parts of the image. As such, DNNs can exploit the consistency in dimensionality to
build feature maps that enhance image recognition accuracy.

Generally, DNN-based image classifiers can be applied in various fields, such as de-
tecting anomalies in X-rays or magnetic resonance imaging in medical imaging, identifying
objects in autonomous vehicles for safe navigation, recognizing individuals in facial recogni-
tion systems for security and access control, and classifying images in multimedia databases
for content-based image retrieval.

Network Traffic Classification. DNNs have also been increasingly studied and ap-
plied in network traffic classification tasks, where the goal is to identify abnormal behavior
by categorizing input network traffic into predefined classes, such as benign or malicious
(See Figure 2.1). In addition to the binary classification of benign and malicious, network
traffic classification can also be formalized as a multi-class problem to detect different types
of network attack behaviors more fine-grained. In network traffic classification, each network
traffic sample in the dataset consists of d network traffic features, including source and desti-
nation IP addresses, port numbers, protocol types, timestamps, packet sizes, flow durations,
and more. Unlike images, the feature dimensions of the input traffic vector x ∈ X := Rd

for the network traffic classifier are heterogeneous. Each of these features can be of different
types and scales. For example, packet sizes are numerical values, representing continuous
quantities, while protocol types are categorical, representing distinct classes.

Given the heterogeneity of feature dimensions in network traffic samples, specialized
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Figure 2.2 Workflow of the DNN-based network traffic classifier.

preprocessing is required to ensure that diverse features are appropriately encoded or nor-
malized for model input. Specifically, for a given d-dimensional raw network traffic feature
vector xraw containing some non-numerical feature dimensions (such as protocol, network
service, timestamp, etc.), the vector is first transformed into a numerical feature vector xnmr

and then normalized into a feature vector x ∈ X ≡ Rd that belongs to a continuous real
number range. Then the DNN model fθ: X → Y behind the network traffic classifier F is
trained according to Eq. (2-3) and used for inference according to Eq. (2-6). The DNN-based
network traffic classifier workflow is shown in Figure 2.2.

By leveraging the ability of DNNs to learn hierarchical and high-level representations
from network traffic data, they can capture nonlinear relationships among heterogeneous fea-
tures, enabling them to better model the interactions and correlations within network traffic
data, thereby being adaptable and effective in identifying complex patterns and anomalies.
DNN-based network traffic classifiers are valuable in several critical cybersecurity appli-
cations, such as analyzing network traffic to detect unauthorized access or potential threats
in network intrusion detection (NID), examining traffic patterns between infected devices
and command-and-control servers to detect malware, and identifying web behaviors such as
redirect chains, domain characteristics, or URL structures in phishing detection.

2.2 Adversarial Attacks

2.2.1 Basic Concept

Adversarial attacks, commonly referred to as evasion attacks, aim to exploit the robust-
ness vulnerabilities of DNNs with sophisticated techniques, causing the model to produce
incorrect predictions. Specifically, adversarial attacks take place during the model’s deploy-
ment phase, where attackers attempt to induce misclassification by feeding carefully crafted
adversarial examples (AEs) into the model. An adversarial example (AE) is a modified ver-
sion of the original input, a.k.a clean example (CE), created by introducing minor perturba-
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tions to the original inputs, expressed as Eq. (2-7):

x∗ = x+ δ (2-7)

where x∗ represents the adversarial example, x denotes the clean example, and δ signifies the
adversarial perturbation. Despite the adversarial manipulation, the adversarial example (AE)
closely resembles the clean example (CE) to human observers and can substantially impair
the model’s performance, as outlined in Definition 2.

Definition 2 (Adversarial Attack). Given a classifier F built on trained DNN model fθ with
C classes, a clean input x with the ground-truth label ytrue, an adversarial attack is charac-
terized as the process of identifying a small adversarial perturbation δ that satisfies:

y = F (x+ δ) = argmax
i∈[C]

fθ(x+ δ)i ̸= ytrue (2-8)

where F (x+ δ) denotes the predicted class of the classifier for the perturbated input x+ δ.

In this dissertation, we mainly consider lp adversarial attacks, as defined in Definition 3.
The size of the perturbation δ introduced to the input x is limited by the lp norm (e.g., l0 [31] ,
l2

[11-13,26,28-29] , and l∞
[9,11,13,27-28,38] ), ensuring that the changes made to the clean input do

not exceed a certain perturbation budget ϵ so that the perturbation is imperceptible. The
adversarial attacks described in this dissertation are all lp adversarial attacks.

Definition 3 (lp Adversarial Attack). Given a classifier F built on trained DNN model fθ
with C classes, a clean input x with the ground-truth label ytrue, an lp adversarial attack is
described as the process of locating a small adversarial perturbation δ that satisfies:

y = F (x+ δ) = argmax
i∈[C]

fθ(x+ δ)i ̸= ytrue, ||δ||p ≤ ϵ (2-9)

where F (x+ δ) denotes the predicted class of the classifier for the perturbated input x+ δ,
||δ||p is the lp norm-measured perturbation magnitude, ϵ is the perturbation budget.

2.2.2 Attack Objectives

Depending on whether the attack target is specified, adversarial attacks can be catego-
rized into two types: untargeted and targeted attacks, corresponding to two different adver-
sarial perturbation optimization objectives when generating AEs.

Untargeted Adversarial Attack. The attacker aims to deceive the model into making
a wrong prediction without targeting a specific class. The untargeted adversarial attack with
a perturbation budget ϵ constrained by the lp norm is defined in Definition 4.
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Definition 4 (Untargeted lp Adversarial Attack). Given a classifier F built on trained DNN
model fθ withC classes, a clean input xwith the ground-truth label ytrue, the attack objective
of a lp adversarial attack is defined as finding a slight adversarial perturbation δ such that:

y = F (x+ δ) = argmax
i∈[C]

fθ(x+ δ)i ̸= ytrue (2-10)

where F (x + δ) indicates the predicted class of the classifier for the perturbed input x + δ.
The goal of generating the adversarial perturbation δ is defined as:

max
||δ||p<ϵ

L(fθ(x+ δ), ytrue) (2-11)

where where ||δ||p represents the magnitude of the perturbation measured by the lp norm, ϵ
denotes the perturbation budget, and L signifies the loss function.

Targeted Adversarial Attack. The attacker seeks to cause the model to classify the
input as a specific incorrect target class. The targeted adversarial attack with a perturbation
budget ϵ constrained by the lp norm is defined in Definition 5

Definition 5 (Targeted lp Adversarial Attack). Given a classifier F built on trained DNN
model fθ with C classes, a clean input x with the ground-truth label ytrue, a target label
ytarget desired by the attacker, the goal of an lp adversarial attack is defined as identifying a
small perturbation δ that satisfies:

y = F (x+ δ) = argmax
i∈[C]

fθ(x+ δ)i = ytarget (2-12)

where F (x+ δ) denotes the predicted class of the classifier for the perturbated input x+ δ.
The optimization objective of adversarial perturbation δ generation is defined as:

min
||δ||p<ϵ

L(fθ(x+ δ), ytarget) (2-13)

where where ||δ||p represents the perturbation magnitude measured by the lp norm, ϵ indi-
cates the perturbation budget, and L denotes the loss function.

2.2.3 Attack Types

According to the knowledge available to the attacker about the victim model fθ, adver-
sarial attacks can be classified into white-box and black-box attacks.

White-Box Adversarial Attack. The attacker possesses full knowledge of the victim
model fθ, which encompasses its architecture, parameters, and training dataset. This exten-
sive insight enables the attacker to design highly effective AEs by directly altering the input
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to optimize the victim model’s targeted loss.
Black-Box Adversarial Attack. The attacker lacks access to the internal mechanisms

of the victimmodel fθ. Instead, they can rely on query-based methods by querying the victim
model fθ and using the outputs to generate AEs, or rely on surrogate model-based methods
by utilizing the transferability of AEs from surrogate models fsurr to fθ.

It is particularly emphasized that adversarial attacks can be categorized into off-manifold
attacks and on-manifold attacks based on the space where perturbations are generated [40] . A
manifold is a geometric object that represents the underlying distribution of a dataset and
captures latent factors.

Object Manifold. Based on the manifold hypothesis [98-99] , high-dimensional data in
practical scenarios is situated on low-dimensional manifolds that are embedded within the
higher-dimensional space. For instance, samples of size 28×28 pixels in the MNIST dataset
can be viewed as data points residing on a low-dimensional manifold situated within a 784-
dimensional feature space, which is supported by the underlying distribution of the dataset.
In this dissertation, an object manifold refers to a dataset consisting of samples belonging to
the same class, which is consistent with the explanation of object manifolds in the human
visual hierarchy [100] . The data points determined by two features (d1, d2) and three features
(d1, d2, d3) are illustrated in Figure 2.3 (a) and Figure 2.3 (b), respectively. The dimension-
ality of the data manifold is determined by the number of degrees of freedom that can be
adjusted when creating the dataset [101] . When the dataset can be generated by changing the
rotation angle, the corresponding object manifold will be a 1-dimentional curve embedded
in the feature space. Similarly, when the dataset can be generated by changing the rotation
angle and scaling transformation, the corresponding object manifold will be a 2-dimentional
hypersurface embedded in the feature space.

Decision Boundary. In the two-class classification task, the feature space learned by
the classifier will be partitioned into two subspaces by the decision boundary, one subspace
for each class. For the feature space embedded with 1-dimentional object manifolds, the
decision boundary of linear classifiers and nonlinear classifiers will be a straight line and
a curve, respectively, as shown in Figure 2.3 (a). For the latent space that includes at least
one embedded 2-dimensional object manifold, the decision boundary of linear classifiers
and nonlinear classifiers will be a hyperplane and a hypersurface, respectively, as shown
in Figure 2.3 (b). Similarly, when the problem is extended to a multi-class classification
task, assuming |Y| categories, the feature space will be partitioned into |Y| subspaces by the
decision boundary, one subspace for each class.
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Figure 2.3 Interpreting object manifolds and decision boundaries in the binary classification task.

Off-Manifold Adversarial Attack. An adversarial example x∗ in an off-manifold ad-
versarial attack is created by adding imperceptible adversarial perturbation δ to the original
input x in the input space X . Formally, the objective of an untargeted off-manifold lp ad-
versarial attack is defined in Eq. (2-11), and the objective of an targeted off-manifold lp ad-
versarial attack is specified in Eq. (2-13). Most regular AEs using input-space perturbations
leave the manifold orthogonally [40] . Thus, conventional adversarial attacks aiming to ma-
nipulate input features are off-manifold attacks, which seek adversarial perturbations in the
input space using various methods (e.g., FGSM [9] , PGD [14] , and AutoAttack [32] ), leaving the
object manifolds corresponding to the ground-truth classes of clean examples.

On-Manifold Adversarial Attack. Novel on-manifold adversarial attacks aim at adding
slight adversarial perturbation ζ to the latent representation z of the original input x in the
latent space ∈ Z . Formally, the goal of an untargeted on-manifold lp adversarial attack is
expressed as Eq. (2-14):

max
||ζ||p<η

L(fθ(Gφ(z + ζ)), ytrue) (2-14)

and the objective of an targeted on-manifold lp adversarial attack is specified as Eq. (2-15):

min
||ζ||p<η

L(fθ(Gφ(z + ζ)), ytarget) (2-15)
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whereG denotes a generative model (e.g., GAN, AutoEncoder, StyleGAN) that can map any
latent representation in Z to its corresponding input-space sample in X , φ denotes the net-
work parameters of the generativemodelG, η represents the perturbation budget for ζ , ζ is the
adversarial perturbation in on-manifold attacks, ||ζ||p is the lp norm-measured perturbation
magnitude, and L signifies the loss function. On-manifold AEs are essentially generalization
errors and can be generated using an approximation of the data manifold corresponding to
the underlying data distribution of the given dataset. Typical attacks in this realm include
on-manifold FGSM (OM-FGSM) [40,102] and on-manifold PGD (OM-PGD) [41] .

2.2.4 Attack Methods

Popular adversarial attack methods include gradient-based AE generation techniques
like FGSM, PGD, OM-FGSM, and OM-PGD; salience map-based techniques like JSMA;
optimization-based techniques like CW; and others.

Fast Gradient Sign Method (FGSM). FGSM [9] is a off-manifold adversarial attack
technique that generates AEs by leveraging the gradient of the loss function L. The formula
of untargeted FGSM in the white-box scenario is given by Eq. (2-16):

x∗ = x+ ϵ · sign(∇xL(fθ(x), ytrue)) (2-16)

where x∗ represents the adversarial example, x is the input associated with the true label ytrue,
ϵ signifies the perturbation factor, fθ denotes the victim model characterized by parameters
θ, and ∇xL(fθ(x), ytrue) indicates the gradient of L(fθ(x), ytrue) with respect to x. The
notation sign refers to the sign function defined as Eq. (2-17):

sign(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(2-17)

The gradient∇xL(fθ(x), ytrue) points in the direction where the loss functionL(fθ(x), ytrue)
rises fastest. FGSM creates AEs by updating the input x in the direction where the loss
function increases, that is, gradient ascent, thereby achieving the goal of deceiving the model.

Projected Gradient Descent (PGD). PGD [14] is an iterative off-manifold lp adversarial
attack method that generates AEs by applying gradient updates and projecting back into a
specified lp norm ball. The formula of untargeted PGD in the white-box scenario is given by:

x(k+1) = ProjBp(x,ϵ)

(
x(k) + α · sign(∇xL(fθ(x(k)), ytrue))

)
(2-18)
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where Bp denotes the lp norm ball, ϵ is the perturbation budget, and ϵs is the step size, that
is, the perturbation factor in each step during iteration. PGD can be applied with various lp
norms (e.g., l2, l∞, and l1), allowing for flexible perturbation types.

On-Manifold FGSM (OM-FGSM). OM-FGSM [41] represents a variation of FGSM
that ensures adversarial examples remain within the data manifold by adjusting the input
in the latent space. The formula of untargeted FGSM in the white-box scenario is given
by Eq. (2-19):

x∗ = Gφ(z + η · sign(∇zL(fθ(x), ytrue)))

= Gφ(z + η · sign(∇zL(fθ(Gφ(z)), ytrue)))
(2-19)

where G is a generative model that can map latent-space representation z ∈ Z to the input-
space sample x ∈ X , φ denotes the parameters of the generative model G, η is the perturba-
tion factor for latent representation z, and L is the loss function.

On-Manifold PGD (OM-PGD). OM-PGD [41] is the variant of PGD that manipulates
the input by adding perturbation to the corresponding latent representation in the latent space.
The formula of untargeted PGD in the white-box scenario is given by Eq. (2-20):

x(k+1) = ProjBp(z,η)

(
x(k) + µ · sign(∇zL(fθ(x(k))), ytrue))

)
= ProjBp(z,η)

(
Gφ(z

(k)) + µ · sign(∇zL(fθ(Gφ(z
(k))), ytrue))

) (2-20)

whereBp denotes the lp norm ball, η is the perturbation budget for latent representation z, and
µ is the step size in latent space, that is, the perturbation factor in each step during iteration.

Jacobian-based Saliency Map Attack (JSMA). JSMA [11] is a targeted off-manifold
adversarial attack technique that generates AEs by focusing on the most influential features
of an input x w.r.t the target label ytarget. It relies on the Jacobian matrix Jij of the model
output fθ(x) w.r.t the input x，fomulated as Eq. (2-21):

Jij = ∇xfθ(x) =

[
∂fθi(x)

∂xj

]
i,j

(2-21)

where fθi(x) denotes the model’s output corresponding to class i, and xj represents the j-th
feature of the input x. Then, the important features for the target class ytarget are identified
using the saliency map. For a targeted attack towards the t-th class ytarget of the victim model
fθ, the saliency score Sj(x) of the j-th feature in x is calculated according to Eq. (2-22):

Sj(x) =

0, if ∂fθt(x)
∂xj

< 0 or
∑

i ̸=t
∂fi(x)
∂xj

> 0

∂fθt(x)
∂xj

·
(∑

i ̸=t

∣∣∣∂fi(x)∂xj

∣∣∣) , otherwise
(2-22)
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where ∂fθt(x)
∂xj

measures howmuch changing the feature xj affects the probability of the model

predicting class ytarget，and
(∑

i ̸=t

∣∣∣∂fi(x)∂xj

∣∣∣) indicates its impact on other non-target classes.
JSMA aims to modify the most salient features to increase the confidence score of the model
on target class ytarget, formulated as Eq. (2-23):

x∗ = x+∆x (2-23)

where ∆x is the perturbation, determined using saliency maps S(x) derived from the Jaco-
bian matrix Jij . JSMA is a feature-wise targeted attack that selectively perturbs a certain
number of salient features of an input, generating AEs with minimal modifications.

Carlini&Wagner Attack (CW)CW [13] is an optimization-based targeted off-manifold
lp adversarial attack that minimizes a specific objective function to generate AEs while main-
taining low perceptibility of the perturbation. The formula of targeted CW in the white-box
scenario is given by Eq. (2-24):

min
δ
||δ||p

subject to x+ δ ∈ [0, 1]n

fθ(x+ δ) = ytarget

(2-24)

where ||δ||p represents the lp norm of the perturbation, typically using l0, l2, or l∞. To de-
termine δ, an objective function o can be established, where fθ(x + δ) = ytarget holds true
if and only if o(x + δ) ≤ 0. Then the optimization problem described in Eq. (2-24) can be
expressed as Eq. (2-25):

min
δ
||δ||p

subject to x+ δ ∈ [0, 1]n

o(x+ δ) ≤ 0

(2-25)

A different formulation of Eq. (2-26) is presented as follows:

min
δ
||δ||p + c · o(x+ δ)

subject to x+ δ ∈ [0, 1]n
(2-26)

where c > 0 is a suitably chosen constant that balances the perturbation size and the attack
success rate. The CW attack frames the adversarial attack as a constrained optimization prob-
lem, making it more powerful in generating minimal, harder-to-detect AEs but significantly
more computationally expensive and slower.
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2.2.5 Attack Scenarios

Adversarial attacks severely threaten real-world application scenarios, including com-
puter vision with image classifiers and cybersecurity relying on network traffic classifiers.

Image Classification. Adversarial attacks can deceive models into misclassifying im-
ages, which can have serious consequences in various multimedia applications. For exam-
ple, in autonomous driving, attackers can craft adversarial images of traffic signs, causing
the image recognition system of vehicles to misinterpret a stop sign as a yield sign, leading
to dangerous situations on the road. Similarly, in security surveillance, AEs could enable
intruders to evade detection by adversarially altering their appearance in ways that exploit
vulnerabilities in the image classifiers, potentially compromising access control.

Network Traffic Classification. An attacker can generate AEs that mimic legitimate
network traffic, allowing malicious activities to bypass security protections. For example, in
network intrusion detection, attackers can evade detection by slightlymodifying network traf-
fic characteristics, allowing malicious activities (such as data exfiltration or system intrusion)
to be performed without triggering alerts. Also, in anomaly detection, attackers can deceive
the system by generating adversarial traffic that resembles normal patterns, such as launch-
ing a distributed denial of service (DDoS) attack while disguising the traffic as legitimate
user behavior. This not only affects the network’s availability but also leads to a failure to
recognize the ongoing attack. Thus, adversarial attacks against network traffic classification
systems can undermine the effectiveness of multiple detection systems.

2.3 Adversarial Robustness

2.3.1 Basic Concepts

Adversarial robustness denotes the capacity of DL models, particularly DNNs, to main-
tain performance under adversarial attacks. According to evaluation methods, they can be
divided into two categories: empirical and certified adversarial robustness.

Empirical Adversarial Robustness. The empirical adversarial robustness of a DL
model is demonstrated by observing its experimental performance against adversarial attacks
during testing. It is usually evaluated by generating AEs from a clean test set and evaluating
the prediction accuracy (typically recorded as robust accuracy) of the model on an adversarial
test set composed of these AEs.

Certified Adversarial Robustness. The certified adversarial robustness of a model is
established by offering guarantees about its robustness to adversarial perturbations through
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theoretical evaluations. It is usually assessed using statistical tools to determine that per-
turbations within a certain range (typically recorded as a lp norm-bounded certified radius)
around an input will be ensured not to lead to misclassification.

2.3.2 Evaluation Methods

Evaluating the adversarial robustness of DNNs involves its ability to resist adversarial
attacks. The methods for evaluating robustness can be divided into empirical evaluation with
robust accuracy and certified evaluation with a robustness guarantee.

Robust Accuracy. The empirical assessment evaluates the adversarial robustness of
the model by measuring its robust accuracy in response to various adversarial attacks，such
as FGSM, PGD, CW, etc. Specifically, robust accuracy is defined as Eq. (2-27):

Robust Accuracy =
Number of Correct Predictions on AEs

Total Number of Tested AEs
=

N(F (x∗)=ytrue)

NTotalTest
(2-27)

where x∗ = x+δ denotes the generated adversarial examples, ytrue is the ground-truth label of
the clean example x, F is the classifer built on the trained model fθ (defined in Definition 1).

Robustness Guarantee. The certified evaluation demonstrates the adversarial robust-
ness of the model by providing a robustness guarantee for the predicted label of the model on
each test input. The robustness guarantee provided by a classifier for an input x is formalized
as a lp norm-measured certified radius R of the robust region containing x, typically centered
at x. The certification of robust regions bounded under different lp norms is specifically de-
noted as lp robustness guarantee, as defined in Definition 6.

Definition 6 (lp Robustness Guarantee). Given a base classifier F , an input x, a perturbation
δ, a distance measure lp, robustness guarantee of F on x against lp-bounded δ is defined as:

For all δ such that ||δ||p < R, F (x+ δ) = F (x) (2-28)

where R is the certified robust radius (a.k.a certified radius).

Common lp robustness guarantees include the certified radii measured by l2 norm and l∞
norm shown in Figure 2.4. In this dissertation, we focus on incomplete certification, which
aims to calculate the lower bound Rl of the exact robust radius Re as tight as possible. Thus,
the certified radius R provided in the dissertation refers to the lower bound Rl.

Certified Accuracy. Different from robust accuracy that measures empirical robustness
against AEs, certified accuracy is the fraction of test inputs for which the model is certified
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Figure 2.4 lp-bounded certified radius of the multi-class classifier on the input x.
Darker colors indicate higher confidence scores in the predicted class. Suppose the input x is predicted as c4, the distance
between the clean example x and the adversarial example x∗ is ||δ||p, the actual robust radius of the model on x is Re, if
||δ||p < Re, the model is certified to give the same prediction on x and x∗. Ru and Rl are the upper and lower bounds of
Re on x. The certified radius R provided in the dissertation refers to the lower bound Rl, the radius aimed to be tightened.

to be robust within a specified perturbation radius Rgiven, given as Eq. (2-29):

Certified Accuracy(Rgiven) =
Number of Successfully Certified Inputs

Total Number of Tested Inputs

=
N(F (x)=ytrue)&(R≥Rgiven)

NTotalTest

(2-29)

where x is the test input with the ground-truth label ytrue, R is certified radius figured out for
xwith robustness certification algorithm. Certified accuracy provides a worst-case guarantee
of adversarial robustness against adversarial attacks, ensuring that within the certified radius,
no AE can fool the model.

2.3.3 Generalization Techniques

For empirical adversarial robustness, generalization techniques represented by adver-
sarial training and mixup training aim to improve the robust accuracy on various adversarial
attacks, that is, its ability to correctly classify diverse AEs.

Adversarial Training (AT). AT serves as an essential defense mechanism against ad-
versarial attacks by enriching the training datasetDtrainwith adversarial inputs to enhance the
empirical robustness of the model fθ. This approach seeks to reduce the worst-case empirical
loss of fθ throughout the training process by introducing adversarial modifications to each
input in the clean training set Dtrain. The training objective of AT is defined as Eq. (2-30):

min
θ

E(x,ytrue)∼Dtrain

[
max
||δ||p<ϵ

L(fθ(x+ δ), ytrue)

]
(2-30)

where E is the expectation function, fθ is the model to be defended with parameters θ,Dtrain
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is the clean training dataset consisting of clean examples x with ground-truth labels ytrue, δ
is the adversarial perturbation, ϵ is the perturbation budget, L denotes the loss function. The
most common AT relying on PGD AEs [14] generated according to Eq. (2-18), so it is called
PGD-based adversarial training (PGD-AT).

Mixup Training (Mixup). Mixup training is a technique for data augmentation that
generates new training instances through linear interpolation between pairs of input samples
along with their associated labels. This method encourages the model to learn smoother
decision boundaries, improving its robustness against adversarial attacks. The objective for
mixup training is formulated as Eq. (2-31):

min
θ

E(xi,yitrue),(xj ,yjtrue)∼Dtrain

[
L(fθ(λxi + (1− λ)xj), λyitrue + (1− λ)yjtrue)

]
(2-31)

where xi and xj represent input samples drawn from the training dataset Dtrain, each asso-
ciated with their respective ground-truth labels yitrue and yjtrue. The mixing parameter λ
is drawn from a Beta distribution, specifically Beta(α, α), which determines the interpola-
tion ratio, while L denotes the loss function. Mixup training contributes to the development
of a more varied training dataset, thereby improving the model’s ability to generalize and
increasing its robustness.

2.3.4 Certification Techniques

For certified adversarial robustness, on the same model and the same input sample,
certification techniques aim to calculate a non-trivial certified robust radius, that is, to tighten
the gap between the provided certified radius (the robustness guarantee) and the actual robust
radius of the model (the true ability to resist all possible perturbations).

Randomized smoothing is the most popular technique that certifies the adversarial ro-
bustness of the model by introducing randomness into the input data before classification.
During prediction, the smoothed classifier, built on the base classifier F , aims to produce
the final predicted label for x by taking a majority vote from the predictions made by F

on multiple noisy versions of x. During certification, by adding noise to the input x, this
method computes a non-trivial certified robust radiusR, providing a robustness guarantee of
the model to potential perturbations within that radius.

Smoothed Classifier. The smoothed classifier is transformed from the base classifier
F (defined in Definition 1) through randomized smoothing, as defined in Eq. (2-32). When
queried at x, smoothed classifier Fsmooth returns the class most likely predicted by F when
x is perturbed by a large amount of noise sampling from a smoothing distribution.
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Definition 7 (Smoothed Classifier). Given a base classifier F , an input x, a smoothing dis-
tribution D with the Probability Density Function (PDF) φ, the smoothed classifier Fsmooth

is defined as:

Fsmooth(x) = argmax
c∈[C]

Pη∼D(F (x+ η) = c) = argmax
c∈[C]

∫
η∼D

I[F (x+ η) = c]φ(η)dη

(2-32)
where P is the probability function, I serves as the indicator function, yielding a value of
1 when the specified condition holds true, and φ(η) denotes the probability density of the
sampled noise data η.

Since the integral in the above equation cannot be solved exactly, the Monte-Carlo esti-
mation defined in Eq. (2-33) is commonly used to approximate the exact solution.

Fsmooth(x) = argmax
c∈[C]

1

n

n∑
k=1

I[F (x+ ηk) = c] (2-33)

where η represents the noise drawn from the smoothing distribution D, and n indicates
the quantity of noise data, and ηk denotes the k-th noise sample. The performance of the
smoothed classifier Fsmooth is determined by the base classifier F , the number of sampled
noise n, and the smoothing distribution D.

Certification with Zero-order Information Most randomized smoothing-based certi-
fication approaches only utilize the zero-order information of the smoothed classifier Fsmooth

to calculate the certified radius R, as defined in in Definition 8.

Definition 8 (Zero-order Information). Given a smoothed classifier Fsmooth, an input x, the
zero-order information refers to the basic characteristics of Fsmooth, such as the statistical
probability Pc that Fsmooth predicts x as each class c in [C], defined as:

For all c ∈ [C], Pc = P(Fsmooth(x) = c) = Pη∼D(F (x+ η) = c) (2-34)

Certification with First-order Information There are also a few approaches that at-
tempt to introduce the high-order information of the smoothed classifier Fsmooth to compute
a tighter robustness guarantee, as defined in Definition 9.

Definition 9 (First-order Information). Given a smoothed classifier Fsmooth, an input sample
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x, first-order information involves the derivative or gradient of Fsmooth, defined as:

For all c ∈ [C], ||∇F c
smooth(x)||p = ||∇P(Fsmooth(x) = c)||p

=||∇Pη∼D(F (x+ η) = c)||p = ||
∂(Pη∼D(F (x+ η) = c))

∂(x)
||p

(2-35)

where F c
smooth(x) = P(Fsmooth(x) = c) is the statistical probability that Fsmooth predicts x

as c, and ||∇F c
smooth(x)||p is the lp-measured magnitude of the gradient of F c

smooth at x.

2.3.5 Transfer Techniques

The main techniques for transferring adversarial robustness between DNNs include ad-
versarial fine-tuning and adversarial distillation.

Adversarial fine-tuning (AFT) involves modifying the parameters of a pre-trained robust
source model using a dataset from the target domain. This process aims to tailor the model
to the new data domain while enhancing its robustness against adversarial attacks [83] . To
distinguish between tunable and non-tunable layers, the set of the first k layers of the DNN
is referred to as the representation learner fθr and the layers closer to the output that are
more pertinent to the specific classification task are referred to as the classification layers fθc .
Depending on whether fine-tuning is performed only on fθc or on the entire neural network
fθ = fθr ◦ fθc , AFT approaches can be classified into Frozen Representation Learner-based
and Entire Neural Network-based.

Frozen Representation Learner-based AFT. The parameters of classification layers
fθc are the only ones that will be modified according to the target-domain training set, as
shown in Eq. (2-36):

min
θc

E(x,ytrue)∼DT
train

[L(fθc(fθr0 (x)), ytrue)] (2-36)

where DT
train represents the training set for the target domain, θr0 indicates the fixed param-

eters of the source representation learner, and θc signifies the parameters associated with the
output layer. This method and its variants are used in AFT [83] , FRFE [85] , FFTL [87] , RDT [84] ,
AutoLoRa [90] , and TWINS [88] .

Entire Neural Network-based AFT. The parameters of all layers of the pre-trained
model are updated based on the target-domain training setDT

train. Furthermore, in order not
to forget the representation learner of the robust source model, an additional regularization
is performed on the representation learner parameter θr, as shown in Eq. (2-37):

min
θc,θr

E(x,ytrue)∼DT
train

[L(fθc(fθr(x)), ytrue) + λ||fθr(x)− fθr0 (x))||2] (2-37)
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where λ ∈ [0, 1] denotes the weight of the dissimilarity penalty between the representations
of the target model and the source model. This method has also been further explored in
FRFE [85] , ADVCL [86] , FFTL [87] , and TWINS [88] .

Adversarial distillation (AD) is an adversarial version of knowledge distillation that aims
to compress the source model fS (teacher) into a lightweight target model fT (student) and
retain the robustness of the source model on the target domain.

Knowledge Distillation. Conventional knowledge distillation (KD) [103] aims to train a
smaller target model fT by using the knowledge of a large source model fS on clean samples,
as shown in Eq. (2-38):

min
θ

E(x,ytrue)∼DT
train

[KL(fSτ

(x)|fT τ

θ (x)) + λ · L(fT
θ (x), ytrue)] (2-38)

where θ signifies the parameters of the entire target model, λ ∈ [0, 1] denotes the weight,KL

represents the KL divergence. fT τ

θ (x) and fSτ
(x) are the probability vectors of the target and

source models on x, calculated from the logits fT
θ (x) and fS(x) under the same temperature

τ , as Eq. (2-39) specifies:

f τ
i (x) =

exp( fi(x)
τ

)∑c
j=1 exp(

fj(x)

τ
)

(2-39)

where i, j ∈ [1, ..., c] denotes the index of the class.
Singular Sample-Guided AD. In addition to the regular classification loss, vanilla ad-

versarial distillation (VAD) [91] minimizes the distillation loss between the distilled output of
fT for AEs x+ δ and that of fS for clean samples x, as Eq. (2-40) specifies. Note that only
the soft labels fS(x) on the clean samples are used as the supervision information.

min
θ

E(x,ytrue)∼DT
train

[λ · τ 2KL(fSτ

(x)|fT τ

θ (x+ δ)) + (1− λ) · L(fT
θ (x), ytrue)] (2-40)

where λ ∈ [0, 1] denotes the weight of regular classification loss. The adversarial pertur-
bation δ referenced in Eq. (2-40) is derived by maximizing the Cross-Entropy loss between
fT
θ (x+ δ) and ytrue, as outlined in Eq. (2-18).

Dual Samples-Guided AD. This type of method, represented by Adaptive Adversarial
Distillation (AAD) [97] , aims to use soft labels fS(x) on clean samples and soft labels fS(x+

δ) on AEs simultaneously for supervision, as specified in Eq. (2-41):

min
θ

E(x,ytrue)∼DT
train

[ max
||δ||p<ϵ

λ ·KL(fSτ

(x+ δ)|fT τ

θ (x+ δ)) + (1− λ) ·KL(fS(x)|fT
θ (x))].

(2-41)
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Chapter III Adversarial Robustness Generalization with Latent
Representation Mixup

Deep neural networks excel at solving intuitive tasks that are hard to describe formally,
such as classification, but are easily deceived by maliciously crafted samples, leading to mis-
classification. Recently, it has been observed that the attack-specific robustness of models
obtained through adversarial training does not generalize well to novel or unseen attacks.
While data augmentation through mixup in the input space has been shown to improve the
generalization and robustness of models, there has been limited research progress on mixup
in the latent space. Furthermore, almost no research on mixup has considered the robust-
ness of models against emerging on-manifold adversarial attacks. In this chapter, we study
the generalization method for adversarial robustness of DNNs and propose a robust train-
ing framework, Latent Representation Mixup (LarepMixup). First, we design a latent-
space data augmentation approach based on dual-mode manifold interpolation, which allows
for interpolating disentangled representations of source samples via convex mixing and bi-
nary mask mixing, to synthesize semantic samples. Then, we present a designed multi-label
training algorithm using mixed samples and mixed labels to smooth the decision boundary,
enhancing robustness against perturbations near the boundary. Finally, we show experimen-
tal results on various image classifiers and datasets, demonstrating that the proposed method
delivers competitive generalization performance of adversarial robustness across various off-
manifold and on-manifold adversarial examples in both white-box and black-box scenarios
compared to leading mixup training techniques.

3.1 Overview

Deep neural networks (DNNs) have achieved outstanding success in deep learning (DL)
tasks, including computer vision, speech recognition, and natural language processing. How-
ever, recent studies have demonstrated that DNNs are susceptible to adversarial examples
(AEs), which are created using imperceptible perturbations to cause misclassification by the
classifier [9,11-13] . Adversarial attacks can be categorized into off-manifold and on-manifold
attacks based on the space where perturbations are generated [40] . The manifold is a geo-
metric object representing the dataset’s underlying distribution, capturing its latent factors.
Off-manifold attacks, like FGSM [9] , PGD [14] , and AutoAttack [32] , aim to manipulate input

39



Doctoral Dissertation of XIDIAN UNIVERSITY

features, while on-manifold attacks, such as OM-FGSM and OM-PGD, target representa-
tions in the latent space. Adversarial training (AT) [9] is a key proactive defense mechanism
against adversarial attacks that integrates defender-generated AEs into the original training
set. AT defenses are divided into off-manifold and on-manifold variants, aiming to construct
respective AEs to enhance model robustness [40-41] . However, AT relies on prior knowledge
of attacks, limiting its generalization against novel or unseen attacks.

Motivated by solving this challenge, we focus on generalizing model robustness to vari-
ous potential adversarial attacks without training with AEs in advance. Previous efforts, such
as InputMixup [42] , AdaMix [47] , AdvMix [43] , CutMix [45] , and PuzzleMixup [46] , have used
mixed examples and mixed labels to train neural networks for image classification, achiev-
ing enhanced robustness. Mixup has also been applied to text classification for improving
generalization [104-105] and robustness [106] . Unlike AT, mixup training does not assume the
defender’s knowledge of the attack method. However, most research focuses on input-space
mixup, synthesizingmixed examples by combining source samples in the input space. Conse-
quently, the resulting samples may lack realistic semantics, negatively impacting the model’s
ability to learn meaningful representations. Additionally, such mixed samples might not ef-
fectively improve robustness against adversarial attacks, as they may not capture subtle dif-
ferences between clean examples (CEs) and adversarial examples (AEs) exploited by attacks.

To synthesize mixed examples that satisfy the underlying feature structure of a given
dataset, we consider mixing latent representations andmapping them to the input space. Lim-
ited work exists on latent-space mixup training besides ManifoldMixup [48] and PatchUp [49] ,
which utilize mixed feature maps from a classifier’s randomly selected hidden layer as extra
training signals. These methods consider off-manifold adversarial attacks but neglect on-
manifold adversarial attacks. More critically, the hidden layer of a classifier struggles to
capture the full complexity of the underlying data manifold due to limited expressivity. Mix-
ing entangled features may not correspond to real input samples and could disrupt boundary
learning. Moreover, the necessary alterations to hidden layers architecture make it difficult
to apply these methods to different models flexibly. To tackle these issues, we create mixed
examples using interpolation on a manifold captured by an external generative model, which
better represents the dataset.

We propose LarepMixup, a robust training framework that uses mixed examples to
improve the generalization of robustness against off-manifold and on-manifold adversarial
attacks. First, we extract an approximately exact data manifold coordinate system using a
generative adversarial network, allowing training and test samples to be projected onto less
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entangled latent representations. Second, we adopt a mixing mode like convex or binary
mask mixing to synthesize on-manifold and off-manifold mixed examples by combining rep-
resentations in the low-dimensional manifold. Lastly, we fine-tune all layers of the classifier
using an augmented dataset containing mixed examples and original training examples with a
softlabel-based cross-entropy loss function. We evaluate the performance of LarepMixup

on various DNNs using CIFAR-10, SVHN, and ImageNet-Mixed10. Results demonstrate
our method effectively boosts robustness against multiple attacks, including FGSM, PGD,
AutoAttack, DeepFool, CW, OM-FGSM, OM-PGD, Fog, Snow, Elastic, and JPEG.

In this chapter, we make the following contributions:

• We design a flexible data augmentation strategy, dual-mode manifold interpolation,
for synthesizing mixed examples using convex or binary mask mixing modes. We
interpret the rationality of mixed examples in improving robustness in terms of their
relative position to AE.

• We propose LarepMixup, the first mixup-based training framework addressing the
threats from off/on-manifold adversarial attacks simultaneously. It boosts the model’s
robustness against perturbations in the input and latent spaces without relying on any
prior knowledge of the adversary.

• We capture the approximate manifold of the data distribution p(x, y|z) by learning
the latent variable space Z of the StyleGAN-ADA model. The on-manifold datasets
created by projecting high-dimensional inputs to disentangled low-dimensional repre-
sentations are open-sourced.

• Extensive evaluations on different DNNs and datasets show that our method improves
off/on-manifold robustness compared to previous mixup training methods. Notably,
we are the first to focus on the performance of the mixup trained model regarding on-
manifold attacks and perceptual attacks, which are recommended for evaluating the
generalized robustness of DNNs on unseen regular and AE.

3.2 Problem Formulation

3.2.1 Threat Model

In this chapter, we focus on untargeted white-box adversarial attacks, which deceive
deep learning models by introducing perturbations to the input data. First, attackers seek
to mislead the model into making any incorrect prediction without a specific target class.
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Furthermore, attackers have full access to the model’s architecture and weights, making them
the most challenging adversaries. Specifically, the attacks considered fall into two categories:

Off-manifold Adversarial Attacks. Off-manifold adversarial attacks aim to perturb
input features directly in the high-dimensional input space, causing models to misclassify, as
defined in Eq. (2-10). These attacks generate AEs by introducing imperceptible perturbations
to input data, thereby shifting the inputs away from their original distribution. Common off-
manifold adversarial attacks include methods such as FGSM, PGD, AutoAttack, DeepFool,
and CW, which directly target input features and push them outside the data manifold.

On-manifold Adversarial Attacks. On-manifold adversarial attacks aim to perturb the
latent space representations, targeting high-level feature abstractions learned by the model,
as defined in Eq. (2-14). These attacks manipulate data points within the latent space, often
remaining closer to the original data manifold, which makes them harder to detect. Typical
on-manifold adversarial attacks include OM-FGSM and OM-PGD, which attack the model
by distorting the learned representations without necessarily shifting the input outside of its
original distribution.

3.2.2 Research Goal

This chapter aims to address three main problems to improve the generalization of the
model’s robustness to unknown types of off-manifolds and on-manifold adversarial attacks.

Problem 1. Boosting off-manifold adversarial robustness. The first goal is to enhance
the robustness against off-manifold adversarial attacks, even those not previously seen during
training. This involves improving the model’s ability to defend against input-space pertur-
bations, ensuring that the decision boundary remains robust to AEs generated outside the
data manifold.

Problem 2. Boosting on-manifold adversarial robustness. The second goal focuses on
increasing the robustness against on-manifold adversarial attacks. Since these attacks occur
in the latent space and often involve subtle manipulations, the challenge is to ensure that the
robustness can generalize to such AEs, ensuring the learned feature representations are robust
to latent space perturbations.

Problem 3. Scaling across various DNN architectures. The final goal is to develop a
scalable solution that can be applied across various DNN architectures. This requires that
the proposed solution is versatile and can enhance adversarial robustness in different models,
whether convolutional networks, residual networks, or other model types used in modern
image classification applications.
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3.2.3 Key Challenge

The main challenges to addressing the problems outlined above are as follows.
Challenge 1. Learning approximate exact data manifold. One of the key challenges is

to accurately capture the underlying data manifold. To defend against on-manifold adversar-
ial attacks, the model must learn new samples that are augmented based on the approximately
exact data manifold. This requires advanced techniques such as generative adversarial net-
works to map input data into a latent space with disentangled representations, which enables
the synthesis of unseen semantic samples that follow the underlying distribution of the dataset
or are near the decision boundary.

Challenge 2. Generating diverse semantic mixed samples. Semantic samples are data
instances that contain meaningful and coherent information consistent with the underlying
distribution of the original dataset. To improve off-manifold and on-manifold adversarial
robustness, the training process must include semantic samples synthesized on demand in
the latent space. A key challenge is augmenting the training set with diverse, meaningful
mixed samples. One potential approach involves using convex and binary mask interpolation
to generate realistic, varied samples, ensuring the augmented samples help the model against
both off-manifold and on-manifold AEs.

Challenge 3. Balancing Adversarial Robustness and Regular Predictive Performance.
Another critical challenge is achieving a balance between improving adversarial robustness
and maintaining high performance on clean (non-adversarial) data. The model needs to be
resilient to adversarial attacks without sacrificing its overall accuracy and generalization on
regular data. This trade-off between robustness and prediction performance is a central issue
in robust training, requiring careful design of loss functions and training processes.

3.3 Design of Method LarepMixup

To improve the generalization of adversarial robustness in DNNs, we propose a robust
training framework called Latent Representation Mixup (LarepMixup). This section first
introduces a dual-mode manifold interpolation data augmentation approach, which generates
mixed samples either near the decision boundary or aligned with the underlying data distri-
bution. Next, we present the framework of LarepMixup training, which smooths the DNN
decision boundary by leveraging mixed semantic samples and corresponding mixed labels.
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3.3.1 Dual-mode Manifold Interpolation Strategy

Manifold interpolation refers to the approach of constructing new representation points
by combining disentangled representations on object manifolds embedded in the latent space.
We design a data augmentation strategy, dual-mode manifold interpolation, to synthesize on-
manifold and off-manifold mixed examples. To infer the manifold coordinate system con-
sisting of degrees of freedom as accurately as possible, a generative adversarial network is
utilized for projecting samples in the input space x ∈ X to the latent representation in the
embedding space z ∈ Z: x = G(z) and synthesizing high-dimensional mixed samples from
the low-dimensional mixed representation zmix: xmix = G(zmix). We propose two kinds of
mixing modes: convex combination and binary mask combination.

x1

x3

x2

Zi

O
ZjZj

Object Manifold of  '3'

Object Manifold of  '8'

Decision Hypersurface

x1

x3

x2

Zi

O
Zj

Object Manifold of  '3'

Object Manifold of  '8'

Decision Hypersurface

x1

x3

x2

Zi

O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

x1

x3

x2

Zi

O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

d1

d3

d2

Zi

O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

d1

d3

d2

Zi

O

Object Manifold of  '3'

Decision Hypersurface

Object Manifold of  '8'

Zk

Zj

Figure 3.1 Convex combination-based manifold interpolation.

Mode 1. Convex Combination-based Manifold Interpolation. Wefirst design aman-
ifold interpolation mode based on the convex combination, which targets continuously creat-
ing mixed representation points along a certain direction in the latent feature space, as shown
in Figure 3.1. For zi, zj , interpolations constructed by dual convex combination are located
on the line segment between zi and zj . For zi, zj , zk, interpolations constructed by ternary
convex combination are located on the plane enclosed by the zi, zj , zk.

Dual Convex Combination. For latent representations zi, zj corresponding to any two
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samples xi, xj in the training set, the mixed latent representation (zmix, ymix) is created
as Eq. (3-1):

zmix = αzi + (1− α)zj,

ymix = αyi + (1− α)yj,
(3-1)

where the coefficient scalarα ∈ [0, 1] is randomly sampled from the Beta(β) distribution. We
mix labels using the same coefficient, following the prior knowledge that linear interpolations
of feature vectors should lead to linear interpolations of the associated labels.

Multivariate Convex Combination. For latent representations z1, ... , zk corresponding
to any k samples x1, ... , xk in the training set, the mixed latent representation (zmix, ymix) is
created as Eq. (3-2):

zmix = α1z1 + ...+ αkzk,

ymix = α1y1 + ...+ αkyk,
(3-2)

where the coefficient vector α = (α1, ..., αk) ∈ A := {Rk : αi ∈ [0, 1],
∑k

i=1 αi = 1}
is sampled from the Dirichlet(γ) distribution with dim(γ) = k. Rk represents a vector
space consisting of k real numbers. A is the k-dimensional probability simplex. α is a k-
dimensional real-valued vector whose components are non-negative and sum to 1.
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Figure 3.2 Binary mask combination-based manifold interpolation.
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Mode 2. Binary Mask Combination-based Manifold Interpolation We further de-
sign binary mask combination-based manifold interpolation, which targets recombining the
components of source representation vectors to synthesize the mixed samples, as shown
in Figure 3.2. For zi, zj , interpolations constructed by dual binary mask combination are
located on the vertices of the polyhedrons formed by the components of zi, zj . For zi, zj , zk,
interpolations constructed by ternary binary mask combination are located on the vertices of
the polyhedrons formed by the components of zi, zj , zk.

Dual Binary Mask Combination. For n-dimensional latent representations zi, zj corre-
sponding to any two samples xi, xj in the training set, the mixed representation (zmix, ymix)

is created as Eq. (3-3):

zmix = m⊙ zi + (1B −m)⊙ zj,

ymix = λyi + (1− λ)yj,
(3-3)

where the coefficient vectorm ∈ B := {0, 1}n is randomly sampled from then-fold Bernoulli(p)
distribution, the coefficient scalar λ =

nmi=1

n
is worked out according to the proportion of the

number of non-zero elements nmi=1 in the binary coefficient vectorm to the dimension n of
itself, 1B is a binary mask filled with ones, and ⊙ denotes the element-wise multiplication.

Multivariate Binary Mask Combination. For n-dimensional representations z1, ... ,
zk corresponding to k samples x1, ... , xk in the training set, the mixed representation
(zmix, ymix) is created as Eq. (3-4):

zmix = m1 ⊙ z1 + ...+mk ⊙ zk,

ymix = λ1y1 + ...+ λkyk,
(3-4)

where the coefficient vectors mi ∈ B := {0, 1}n and
∑k

i=1 mi = 1B. m1 is firstly sampled
from the n-fold Bernoulli(p) distribution, and then q non-zero elements in the vector 1B−m1

are replaced with binary values sampled from the q-fold Bernoulli distribution, to obtain the
vectorm2. Subsequentmi is sampled in the same way.

Interpretation of Mixed Examples in Improving Off/On-manifold Robustness. The
impact of mixed examples on the generalization of adversarial robustness of deep neural net-
works can be interpreted from two perspectives: robustness against on-manifold adversarial
attacks and robustness against off-manifold adversarial attacks.

Off-Manifold Adversarial Robustness. For source representations located on different
object manifolds, that is, when the source samples belong to different categories, the mixed
sample formed by the manifold interpolation strategy will leave all source object manifolds
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and be closer to the decision boundary than at least one of the source samples. Since con-
ventional adversarial attacks essentially generate off-manifold AEs [40-41] , the mixed samples
augmented based on the proposed interpolation strategy can cover some off-manifold AEs in
the consistent feasible region. Thus, by learning from the off-manifold mixed samples and
corresponding mixed softlabels, the decision boundary of the classifier will be encouraged to
yield lower champion confidences for points lying in regions between the object manifolds,
presenting smoother. Particularly, the area covered by interpolation points is not restricted to
specific attacks, so the robustness improvement can be generalized to some unseen attacks.

On-Manifold Adversarial Robustness. For source representations within the same ob-
ject manifold, that is, when the source samples belong to the same category, the mixed sam-
ple formed by the manifold interpolation strategy will be close to or lie within the source
object manifold, which can be regarded as the unseen samples meeting the underlying data
distribution, such as the on-manifold AEs [40-41,102] . Thus, by training on on-manifold mixed
examples, the classifier will be encouraged to learn an approximate manifold that is closer to
the underlying manifold of the dataset. In other words, hidden layers of the model will be en-
couraged to learn high-level representations closer to the real latent variables that support the
underlying data distribution of the given dataset. On-manifold adversarial robustness is es-
sentially the generalization of amodel to unseen samples within amanifold. Thus, fine-tuning
with on-manifold mixed examples can be beneficial in boosting the on-manifold robustness.

3.3.2 Robust Training Framework

A geometric illustration of the Latent Representation Mixup (LarepMixup)-based ro-
bust training framework is shown in Figure 3.3. Raw samples (xi, xj) are projected into la-
tent representations (zi, zj) at first. Then, source representations and labels are separately
combined in the interpolation module using a mixup function with optional mixing modes.
Finally, the target model F is fine-tuned using softlabel-based cross-entropy loss on mixed
labels ymix and samples xmix, which are synthesized from mixed representation zmix.

Stage 1. Low-dimensional Manifold Embedding. In our work, the StyleGAN2-ADA
network [107] is adopted to project images into the latent space, which excels at learning dis-
entangled variance factors to represent the latent space of complex training datasets [108] .
We use 1000 iterations of gradient descent to find the disentangled latent code z, which
is mapped from the randomly sampled code zrandom through the mapping network Fmap

in the StyleGAN. The low-dimensional manifold embedding method in LarepMixup is
summarized in the Algorithm 3.1. The loss term for optimizing the representation is de-
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Figure 3.3 Framework of latent representation mixup (LarepMixup).
LarepMixup consists of three main stages: Low-dimensional Manifold Embedding (left),
Latent Representations Mixup (middle), and Softlabel-based Multi-Label Training (right).

fined as the combination of the image quality term and regularization term Ltotal(G(z), x) =

Limage + Lnoise, following the definition in the original work, where Limage signifies the
LPIPIS distance between x and G(z), and Lnoise indicates the sum of squares of the noise
map resolution autocorrelation coefficients. In LarepMixup, on-manifold dataset is de-
noted as DM = {G(zi), yi))}Ni=1, where N is the number of samples selected from training
set Dtrain, zi = G−1(xi) is the result of projecting xi ∈ Dtrain into the latent space via
synthesis network G, and yi is the ground truth label corresponding to xi.

Stage 2. Latent Representations Mixup. We implemented dual mixup and the ternary
mixup interfaces, each of which supports both convex and binary mask mixing modes. To
enhance off/on-manifold adversarial robustness concurrently, we mix source samples from
different and identical classes.

Dual Latent Representations Mixup. The dual latent representations mixup method is
presented in Algorithm 3.2. For a batch of representations with the batch size of batchsize,
it combines with its shuffled version, enabling a mixing space of batchsize2. The mixing
mode is specified by the enumerated parameter e.

Ternary Latent Representations Mixup. The ternary latent representationsmixupmethod
is given in Algorithm 3.3. A batch of representations will be combined with the objects
obtained by shuffling itself twice, so the mixing space can reach batchsize3. Relative to
dual mixup, ternary mixup spans a broader area, like the triangle in Figure 3.1. More-
over, k-source latent representations mixup expands the mixing space to a larger volume
of batchsizek.

Stage 3. Softlabel-based Multi-Label Training The vanilla classifier, trained on nor-
mal samples, is designed to be fine-tuned on an augmented dataset containing mixed ex-
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Algorithm 3.1 Low-dimensional Manifold Embedding

Input: examples (x, ytrue) ∈ Dtrain, optimization iteration number T , learning rate η.
Output: representations (z, ytrue) ∈ Ztrain, on-manifold examples (G(z), ytrue) ∈ DM .
1: pretrain G on Dtrain

2: for i = 1 to N do
3: t← 0

4: sample zrandom,i ∼ Normal(0, 1)
5: zi,t ← Fmap(zrandom,i)

6: while t < T do
7: generate G(zi,t)

8: zi,t+1 ← zi,t − η(∇z(i,t)Ltotal(G(zi,t), xi))

9: t← t+ 1

10: end while
11: zi ← zi,t+1

12: add (zi, yi) to Ztrain

13: add (G(zi), yi) to DM

14: i← i+ 1

15: end for

amples (xmix, ymix) ∈ Dmix and original examples (xori, yori) ∈ Dtrain to learn a robust
decision boundary while avoiding overfitting to the mixed examples and knowledge loss on
the original examples. For the augmented example xmix with the soft mixed label ymix (la-
bel vectors having two or three non-zero elements summing to 1), cross-entropy loss based
on the one-hot label is inapplicable. Instead, we separately calculate the cross-entropy loss
for mixed examples on multiple target labels and combine them with the same coefficient
α used for the sample mixing. The objective of the softlabel-based training is formalized
as Eq. (3-5).

min
θ

E(x,ytrue)∼Dtrain∪Dmix
Lsoft(fθ(x), ytrue). (3-5)

LarepMixup is proposed as an implicit regularization technique based on data aug-
mentation, making it broadly applicable to common DNNs without requiring any modifi-
cation of the model structure. While our framework is illustrated with images, it can be
extended to other input domains by replacing the StyleGAN-based manifold embedding de-
signed for images with appropriate representation encoding algorithms suitable for other in-
put features, such as Autoencoder for network traffic features and BERT for text features.
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Algorithm 3.2 Dual Latent Representations Mixup

Input: batch of n-dim representations (Zori, Yori), mixing mode e, index shuffle function
Fshu, mixing coefficient transform function Ftra.

Output: batch of mixed examples (Xmix, Ymix).
1: (Zshu, Yshu)← Fshu(Zori, Yori)

2: if e = ConvexMixup then
3: sample α ∼ Beta(β)
4: Zmix ← αZori + (1− α)Yori

5: Ymix ← αYori + (1− α)Yshu

6: end if
7: if e = MaskMixup then
8: sample p ∼ Uniform(0, 1)

9: samplem ∼ n-fold Bernoulli(p)
10: Zmix ← m⊙ Zori + (1B −m)⊙ Zshu

11: λ← Ftra(m)

12: Ymix ← λYori + (1− λ)Yshu

13: end if
14: Xmix ← G(Zmix)

15: output (Xmix, Ymix)

3.4 Experimental Setup

3.4.1 Testbed

We developed the project using PyTorch 1.8.1 [109] . Experiments were conducted on an
NVIDIA GV102 GPU with CUDA V11.1.74. Off-manifold adversarial attacks were imple-
mented with the Adversarial Robustness Toolbox [110] , while on-manifold adversarial attacks
were achieved by aggregating StyleGAN and advertorch [111] . Source code and on-manifold
dataset are available: https://github.com/LarepMixup.

3.4.2 Model Architectures

To analyze the universality of LarepMixup on different classifier architectures, we
used a series of base models implemented in the Torchvision library [109] , including convo-
lutional block-based DNNs (such as AlexNet [112] and VGG-19 [113] ), residual block-based
DNNs (such as ResNet-18/34/50 [114] and DenseNet-169 [115] ), and inception block-based
DNN (such as GoogLeNet [116] ). To maintain fairness when comparing various DNNs on the
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Algorithm 3.3 Ternary Latent Representations Mixup

Input: batch of n-dim representations (Zori, Yori), mixing mode e, index shuffle function
Fshu, nonzero element counting function Fnonzero, function Frep(a, b) to replace nonzero
elements in a with b.

Output: batch of mixed examples (Xmix, Ymix).
1: (Zshu1, Yshu1)← Fshu(Zori, Yori)

2: (Zshu2, Yshu2)← Fshu(Zori, Yori)

3: if e = ConvexMixup then
4: sample α = (α1, α2, α3) ∼ Dirichlet(γ)
5: Zmix ← α1Zori + α2Zshu1 + α3Zshu2

6: Ymix ← α1Yori + α2, Yshu1 + α3Yshu2

7: end if
8: if e = MaskMixup then
9: n1 ← n

10: sample p1 ∼ Uniform(0, 1)

11: samplem1 ∼ n1-fold Bernoulli(p1)
12: numnonzero ← Fnonzero(1B −m1)

13: n2 ← numnonzero

14: sample p2 ∼ Uniform(0, 1)

15: sample temp ∼ n2-fold Bernoulli(p2)
16: m2 ← Frep(1B −m1, temp)

17: m3 ← 1B −m1 −m2

18: zmix ← m1 ⊙ Zori +m2 ⊙ Zshu1 +m3 ⊙ Zshu2

19: λ1, λ2, λ3 ← Ftra(m1,m2,m3)

20: ymix ← λ1Yori + λ2Yshu1 + λ3Yshu2

21: end if
22: Xmix ← G(Zmix)

23: output (Xmix, Ymix)

same dataset or different datasets on a single model, we did not modify any base architec-
ture and used uniform parameters during dataset preprocessing. Additionally, we conducted
experiments on the PreActResNet-18/34/50 [117] and WideResNet-28-10 [118] adopted in the
compared mixup training schemes.
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3.4.3 Datasets

In this chapter, three color-channel datasets are used for experimental evaluation.

• TheCIFAR-10 dataset [119] contains 3×32×32 samples from 10 categories: {airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck}. Each category contains
50, 000 training samples and 10, 000 test samples.

• The SVHN dataset [120] contains 3×32×32 samples from 10 categories: {1, 2, 3, 4, 5,
6, 7, 8, 9, 0}, including a total of 73, 257 training samples and 26, 032 testing samples.

• ImageNet-Mixed10 dataset [41] contains 3×256×256 samples from 10 categories: {dog,
bird, insect,monkey, feline, truck, fruit, horse, fungus, boat}, selected from the
ImageNet dataset [112] , including 77, 237 training samples and 3, 000 testing samples.

3.4.4 Attack Configuration

Parameters in Adversarial Attacks. We use two categories of adversarial attack meth-
ods: off-manifold and on-manifold. We normalize input sample ranges across datasets to the
[−1, 1] interval, which is passed as a clip parameter to attack interfaces. Except for the ab-
lation study of perturbation strength, the attack parameters of other experiments are given in
Table 3.1. ϵ and η represent norm bounds for off-manifold and on-manifold perturbations,
respectively, in p-norm bounded attacks. ϵs and ηs indicate single-step upper bounds for ϵ
and η. ni refers to the maximum iteration rounds. We use the default confidence of 0. For the
CW attack based on optimization, there is no configuration parameter about the perturbation
threshold, but the confidence parameter k needs to be configured. All CW attacks used in
this work adopt the default confidence of 0. These attack parameters are chosen because they
relatively balance the perceptibility of adversarial perturbations with the attack success rate
on the vanilla model.

Parameters in Perceptual Attacks. The perceptual attack methods we use can be di-
vided into three categories: weather conditions (Fog, Snow), elastic transformation, and dig-
ital compression (JPEG), as shown in Table 3.2. The reason for using perceptual attacks is
to evaluate the generalization ability of the robust model to unseen attacks, which is adopted
in [41,121-123] . Our parameter configuration mainly refers to the perceptual attack parameters
used in the DMAT [41] . All these attacks use 200 Gradient Descent iterations.
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Table 3.1 Parameters in adversarial attacks

Dataset Perturbation Space Name Norm
Configuration

ϵ(η) ϵs(ηs) ni k

CIFAR-10
Off-Manifold

FGSM l∞ 0.05 - - -
PGD l∞ 0.05 0.10 100 -
AutoAttack l∞ 0.05 0.10 - -
DeepFool l2 0.02 - 100 -
CW l2 - - - 0

On-Manifold
OM-FGSM l∞ 0.05 - - -
OM-PGD l∞ 0.05 0.01 40 -

SVHN
Off-Manifold

FGSM l∞ 0.10 0.10 - -
PGD l∞ 0.10 0.10 100 -
AutoAttack l∞ 0.10 0.10 - -
DeepFool l2 0.10 - 100 -
CW l2 - - - 0

On-Manifold
OM-FGSM l∞ 0.10 - - -
OM-PGD l∞ 0.10 0.01 40 -

ImageNet-Mixed10
Off-Manifold

FGSM l∞ 0.02 0.10 - -
PGD l∞ 0.02 0.10 100 -
AutoAttack l∞ 0.02 0.10 - -
DeepFool l2 0.02 - 100 -
CW l2 - - - 0

On-Manifold
OM-FGSM l∞ 0.02 - - -
OM-PGD l∞ 0.02 0.01 40 -

3.4.5 Defense Configuration

Parameters in Standard Training. The models we employ primarily take two forms:
one originates from the Torchvision library without any structural modifications, which in-
cludes AlexNet, ResNet-18/34/50, DenseNet-169, VGG-19, and GoogleNet; the other is in-
dependently implemented, including PreActResNet-18/34/50. Furthermore, preprocessing
across all datasets is consistent. The input range of samples for all datasets is normalized to
the [−1, 1] interval using a normalization function with mean and standard deviation of 0.5.
During standard training, the initial learning rate, 0.01, is reduced to one-tenth of the original
every 10 epochs.

Parameters in Mixup Training. We evaluate mixup training methods, including input-
spacemixup (InputMixup, CutMix, PuzzleMixup) that directlymix input samples, and latent-
space mixup (ManifoldMixup, PatchUp, LarepMixup) that mix latent samples. The max-
imum number of epochs is set to 40 for all mixup training methods. The initial learning
rate is 0.01, reduced by a factor of 10 every 10 epochs. All augmented datasets used for
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Table 3.2 Parameters in perceptual attacks

Dataset Perturbation Space Name Norm
Configuration

ϵ (in pixel) ϵs ni

CIFAR-10 Off-Manifold

Fog

l∞

128 0.002 200
Snow 0.0625 0.002 200
Elastic 0.5 0.035 200
JPEG 32 2.250 200

SVHN Off-Manifold

Fog

l∞

128 0.002 200
Snow 0.0625 0.002 200
Elastic 0.5 0.035 200
JPEG 32 2.250 200

mixup training consisted of mixed examples and an equal number of clean training exam-
ples. The number of mixed examples is consistent with the length of the training set. A
dual-convex mixing mode is adopted in all experiments except for experiments evaluating
the effect of mixing modes on the robustness performance. For InputMixup, ManifoldMixup,
PuzzleMixup, and CutMix, the sampling distribution is set to Beta(1.0,1.0). For PatchUp, the
sampling distribution is set to the Bernoulli distribution. The parameters of LarepMixup

training are shown in Table 3.3. Since we choose to use a 512-dimensional vector to describe
the latent representation, 512 Bernoulli trials are performed to determine whether the mask
value of each dimension of the latent representation is 1 or 0 for binary mask mixing mode.
The probability that the mask value of each dimension takes a value of 1 in each Bernoulli
trial follows a uniform distribution. It is worth mentioning that the Bernoulli3(512, p) distri-
bution used for ternary mask mixing refers to conducting Bernoulli(512, p) sampling of three
source samples successively.

Table 3.3 Parameters in LarepMixup training

Dataset
Defense

Epochs BatchSize Lr MixedNum Mixup Mode Sampling Distribution

CIFAR-10 40 256 0.01 50,000
Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, p), p∼U(0,1)

SVHN 40 256 0.01 73,257
Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, p), p∼U(0,1)

ImageNet-Mixed10 40 32 0.01 77,237

Dual Convex Beta(1.0, 1.0)
Dual Mask Bernoulli(512, p), p∼U(0,1)
Ternary Convex Dirichlet(1.0, 1.0, 1.0)
Ternary Mask Bernoulli3(512, p), p∼U(0,1)
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Parameters in Adversarial Training. In adversarial training (AT) that is also based
on data augmentation, we ensure fairness in performance comparison by setting the same
number of epochs, batch size, learning rate, and augmented examples as mixup training.
The augmented examples used in AT consist of AEs and an equal number of clean training
examples. We generate on-manifold AEs and off-manifold AEs, each with half the num-
ber of original training samples, to ensure that the total number of augmented examples is
consistent, whether in mixup training or AT. The properties of the evaluated robust training
methods are compared in Table 3.4.

Table 3.4 Comparison of defense methods attributes

Method Faced Attack Surfaces Knowledge of Attacker Augmentation Space

PGD-AT [14] Off-manifold Known Input Space
PGD-DMAT [41] Off-manifold & On-manifold Known Input & Latent Space
InputMixup [42] Off-manifold Unknown Input Space
CutMix [45] Off-manifold Unknown Input Space
PuzzleMixup [46] Off-manifold Unknown Input Space
ManifoldMixup [48] Off-manifold Unknown Latent Space
PatchUp [49] Off-manifold Unknown Latent Space
LarepMixup(Ours) Off-manifold & On-manifold Unknown Latent Space

3.4.6 Evaluation Metrics

This chapter primarily uses two metrics, clean accuracy and robust accuracy, to empir-
ically evaluate the regular predictive performance and adversarial robustness of the model.

Clean Accuracy. Clean accuracy reflects the regular predictive performance of a model
when evaluated on clean examples (CEs) from the test set. It measures the proportion of
correctly classified examples from a clean test set, as defined in Eq. (3-6):

Clean Accuracy =
Number of Correct Predictions on CEs

Total Number of Tested CEs
=

N(F (x)=ytrue)

NTotalTest

. (3-6)

Robust Accuracy. Robust accuracy evaluates the robustness performance of the model
against adversarial attacks. It measures the proportion of correctly classified instances from
a set of adversarial examples (AEs), as defined in Eq. (2-27):
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3.5 Horizontal Experimental Results and Analysis

In this section, we compare LarepMixup with SOTA defense methods against adver-
sarial attacks. This includes mixup training under the same defensive capability assumptions
as ours and adversarial training (AT) (Section 3.5.1), which operates under stronger defensive
capability assumptions (Section 3.5.2).

3.5.1 Comparison with SOTA Mixup Training Methods

We tested the performance of our proposed method in improving general robustness
compared to SOTA mixup training methods. For each attack, we ran each robust training
method six times with the same settings and averaged the results. The initial learning rate,
epochs, and batch size were 0.01, 256, and 40. All mixup training methods based on beta
distribution sampling had parameters (1.0, 1.0) of the beta distribution. Experiments were
conducted on PreActResNet models, with CIFAR-10 results in Table 3.5 and SVHN results
in Table 3.6. We bolded the best prediction accuracy and underlined the runner-up for each
column.

We evaluate off-manifold adversarial robustness using five off-manifold adversarial at-
tacks: FGSM, PGD, AutoAttack, DeepFool, and CW. FGSM and DeepFool are single-
step attacks, PGD is multi-step, and AutoAttack is an integrated version of multiple at-
tacks with PGD as the primary one. For CIFAR-10, budgets of DeepFool, FGSM, PGD,
OM-FGSM, and OM-PGD are 0.02, 0.05, 0.05, 0.05, 0.05, respectively. For SVHN, all
budgets are set to 0.1. Refer to Table 3.1 for more details on attack parameters. As seen
in Table 3.5, our method achieves excellent defense results in most cases on the CIFAR-10
dataset. Convex-LarepMixup and ManifoldMixup use the linear interpolation strategy,
while Mask-LarepMixup and PatchUp employ a binary mask mixing strategy. On the
SVHN dataset, we observe from Table 3.6 that LarepMixup and ManifoldMixup have
their own areas of expertise. ManifoldMixup is competitive in PGD-related attacks, while
LarepMixup has a stable advantage in FGSM, DeepFool, CW, and OM-FGSM.

3.5.2 Comparison with SOTA Adversarial Training Methods

To further compare the difference between the improved robustness based on the pro-
posed method and the improved robustness based on adversarial training (AT), we compared
LarepMixup with two powerful AT methods, PGD-AT [14] and PGD-DMAT [41] , on the
CIFAR-10 and SVHN datasets. In PGD-AT, the defender generates the same number of
white-box PGD examples as the original training samples for training. In PGD-DMAT, the

56



Chapter III Adversarial Robustness Generalization with Latent Representation Mixup

Table 3.5 Accuracy of CIFAR-10 classification models on off/on-manifold AEs
KnoA denotes that prior KNOwledge about adversarial Attackers is required during training.

ModN denotes that Network architecture must be MODified during training.
PreActResNet-18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 87.37±0.00 32.07±0.00 28.93±0.00 7.59±0.00 10.36±0.00 2.60±0.00 51.02±0.00 21.68±0.00
InputMixup [42] 84.48±1.45 63.58±3.36 68.12±3.46 56.63±10.20 37.97±2.58 41.11±2.10 58.53±0.43 44.11±1.34 % %

CutMix [45] 82.14±3.00 65.51±1.03 69.67±1.34 64.41±3.55 36.79±2.60 39.74±3.10 57.59±0.31 43.50±1.71 % %

PuzzleMixup [46] 83.11±1.64 65.73±2.46 70.35±2.60 64.03±6.06 38.86±1.53 41.83±1.74 57.80±0.77 43.68±2.19 % %

ManifoldMixup [48] 71.10±4.17 49.26±1.34 52.49±1.91 44.08±1.60 25.33±2.76 27.19±2.53 50.16±1.66 38.64±0.80 % !

PatchUp [49] 72.02±4.10 51.35±2.13 55.91±2.29 44.61±2.56 28.81±3.35 30.94±3.13 52.22±2.32 41.33±1.24 % !

Ours-Convex 84.02±1.77 68.86±2.88 72.65±3.59 66.98±5.93 39.03±2.16 42.03±2.31 60.02±0.91 46.72±1.52 % %

Ours-Mask 84.60±1.27 66.56±1.50 71.22±1.93 63.69±4.61 39.27±2.97 42.54±2.74 58.36±0.60 44.80±0.73 % %

PreActResNet-34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 83.57±0.00 31.37±0.00 25.71±0.00 5.27±0.00 12.27±0.00 1.89±0.00 49.23±0.00 17.05±0.00
InputMixup [42] 68.42±7.38 62.19±4.22 63.84±4.98 63.79±4.99 26.36±4.07 29.77±4.16 54.68±3.84 47.18±2.29 % %

CutMix [45] 71.21±6.16 62.45±2.71 64.61±3.50 64.30±3.16 28.88±2.07 32.12±2.38 55.65±2.56 46.40±0.99 % %

PuzzleMixup [46] 67.06±7.62 60.89±4.99 62.55±5.76 62.66±5.84 25.89±2.98 28.96±3.37 54.04±3.87 46.31±2.05 % %

ManifoldMixup [48] 73.69±1.78 49.65±1.94 52.24±2.08 43.75±2.04 31.09±3.13 32.81±3.18 52.99±0.24 39.47±1.34 % !

PatchUp [49] 72.71±2.96 49.53±1.44 52.76±2.80 42.31±1.80 32.35±3.66 34.10±3.45 53.03±2.37 39.38±1.63 % !

Ours-Convex 78.44±1.60 67.81±1.04 71.12±1.08 70.60±1.30 33.98±1.04 37.42±1.03 58.96±0.67 47.99±1.16 % %

Ours-Mask 77.13±3.17 66.16±1.58 68.90±1.62 68.40±2.16 32.95±2.26 36.38±2.23 58.31±0.96 47.30±1.06 % %

PreActResNet-50

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 84.74±0.00 35.27±0.00 26.89±0.00 5.43±0.00 12.03±0.00 1.13±0.00 50.26±0.00 19.13±0.00
InputMixup [42] 74.93±2.22 65.28±1.42 67.42±1.67 67.57±2.04 31.35±2.59 34.39±2.40 58.92±1.28 49.81±1.23 % %

CutMix [45] 75.27±3.01 64.68±2.18 66.98±2.46 66.97±2.30 30.70±2.77 33.84±2.78 58.40±1.00 48.61±1.24 % %

PuzzleMixup [46] 67.35±5.41 59.96±2.92 61.18±3.36 61.41±2.79 26.84±2.06 29.58±2.03 55.72±1.91 48.46±1.39 % %

ManifoldMixup [48] 76.17±3.03 54.54±2.59 56.76±2.88 47.64±6.91 29.97±4.24 32.81±4.04 55.26±0.93 40.93±2.34 % !

PatchUp [49] 74.26±2.86 54.32±1.67 56.16±1.73 46.87±6.63 28.96±2.96 31.40±2.82 55.63±1.17 42.30±2.87 % !

Ours-Convex 76.54±2.08 66.99±1.87 69.73±1.92 69.69±1.49 31.75±2.06 35.06±1.91 59.73±1.00 50.04±0.52 % %

Ours-Mask 76.10±4.38 66.04±1.89 68.29±2.20 67.76±2.28 34.21±3.45 37.32±3.67 59.22±1.04 49.82±1.10 % %

defender generates PGD and OM-PGD AEs, each with half the number of original training
samples for training. Attack budgets of AEs used for AT are all set to 0.05. We used three
kinds of the PreActeResNet models.

As shown in Figure 3.4, LarepMixup achieves higher robustness improvements than
AT for most adversarial attacks on CIFAR-10, whether using convex mixing or binary mask
mixing. Notably, LarepMixup also maintains higher accuracy on clean samples, which is
very close to the clean accuracy. Figure 3.5 shows that LarepMixup still maintains good
clean accuracy in SVHN, especially compared to the DMAT work. For off-manifold attacks,
robustness from PGD-AT is greater, but when faced with on-manifold adversarial attacks,
LarepMixup regains its advantage. Overall, LarepMixup achieves comparable robust
performance to AT without actively generating AEs for training.
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Table 3.6 Accuracy of SVHN classification models on off/on-manifold AEs
KnoA denotes that prior KNOwledge about adversarial Attackers is required during training.

ModN denotes that Network architecture must be MODified during training.
PreActResNet-18

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 95.97±0.00 57.29±0.00 34.57±0.00 29.21±0.00 22.51±0.00 21.54±0.00 41.04±0.00 6.78±0.00
InputMixup [42] 94.39±0.79 68.77±2.03 58.81±2.34 51.25±2.22 60.50±3.33 64.42±2.16 44.58±0.86 18.48±1.04 % %

CutMix [45] 94.19±1.07 68.78±2.01 59.52±3.28 52.50±3.64 57.45±3.26 63.62±1.52 44.31±1.02 17.87±0.91 % %

PuzzleMixup [46] 94.54±0.66 67.55±1.79 58.79±3.34 51.65±3.48 55.87±2.22 63.42±1.51 43.63±0.62 16.00±1.15 % %

ManifoldMixup [48] 89.15±4.22 67.21±1.85 60.32±1.94 53.60±3.21 52.95±3.15 60.57±1.97 43.32±1.52 22.19±2.01 % !

PatchUp [49] 89.87±1.78 66.44±0.78 58.96±1.90 52.36±2.82 54.68±2.69 61.54±1.68 43.40±0.91 21.51±1.05 % !

Ours-Convex 94.38±0.61 70.62±1.35 63.35±0.67 56.66±1.22 58.14±0.75 64.45±0.54 45.24±0.44 19.59±0.57 % %

Ours-Mask 94.42±0.93 70.22±1.30 60.02±1.72 53.34±2.02 57.98±2.44 64.36±1.08 45.26±0.54 19.90±0.71 % %

PreActResNet-34

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 95.75±0.00 57.11±0.00 35.57±0.00 29.80±0.00 19.94±0.00 25.62±0.00 36.62±0.00 5.01±0.00
InputMixup [42] 93.41±1.85 66.14±0.85 60.42±6.52 52.82±7.44 49.76±3.32 62.47±1.10 39.97±0.97 17.07±0.85 % %

CutMix [45] 93.36±2.74 65.71±0.56 60.09±7.25 53.39±8.66 49.26±2.00 61.83±1.35 39.81±1.09 16.25±0.88 % %

PuzzleMixup [46] 92.53±4.79 65.12±0.82 61.06±7.05 54.17±8.54 48.65±3.22 61.63±2.37 39.24±1.89 15.89±2.15 % %

ManifoldMixup [48] 81.27±2.68 61.63±2.07 63.61±3.10 59.19±1.94 44.88±4.40 56.29±3.92 36.11±1.07 21.68±1.26 % !

PatchUp [49] 68.39±9.86 51.94±4.91 55.01±6.31 52.17±5.91 36.07±2.41 47.47±5.47 31.81±2.20 22.19±2.72 % !

Ours-Convex 94.94±0.31 68.37±0.76 61.75±3.65 53.55±4.05 52.21±1.67 64.61±1.27 41.13±0.41 16.88±0.38 % %

Ours-Mask 93.63±1.13 67.69±0.52 63.21±5.39 55.74±5.69 52.10±2.75 64.27±1.30 40.70±0.60 17.01±0.47 % %

PreActResNet-50

Method Clean FGSM PGD AutoAttack DeepFool CW OM-FGSM OM-PGD KnoA ModN

Vanilla 95.76±0.00 60.02±0.00 35.61±0.00 29.94±0.00 23.72±0.00 27.09±0.00 40.01±0.00 6.73±0.00
InputMixup [42] 94.45±0.29 66.80±1.09 58.42±2.83 50.07±3.26 49.19±1.79 60.38±1.30 42.04±0.37 17.17±0.58 % %

CutMix [45] 94.48±0.31 65.83±1.79 57.87±1.85 49.99±1.21 45.26±1.06 58.98±0.44 41.73±0.46 15.37±0.75 % %

PuzzleMixup [46] 94.13±1.63 66.82±0.82 61.97±4.94 54.42±5.66 47.50±1.59 61.34±0.72 41.46±0.96 15.63±0.98 % %

ManifoldMixup [48] 77.84±9.38 61.22±5.05 63.16±4.59 60.21±3.74 44.15±7.24 54.42±6.05 36.84±3.29 22.97±1.79 % !

PatchUp [49] 78.36±1.65 58.62±3.41 60.46±3.63 57.70±3.59 43.14±3.84 54.24±2.05 36.25±1.74 21.95±1.75 % !

Ours-Convex 93.53±1.96 69.02±0.70 66.33±5.88 59.78±7.54 49.39±2.03 61.59±1.07 42.27±0.87 17.57±1.23 % %

Ours-Mask 94.16±1.73 68.15±0.46 60.39±2.93 52.62±3.15 53.83±2.38 63.21±1.32 41.45±3.86 19.34±3.09 % %

3.6 Vertical Experimental Results and Analysis

We first present our constructed on-manifold dataset and the perception of mixed sam-
ples in Section 3.6.1. Then, we analyze the effect of varying perturbation budgets on robust-
ness improvements in Section 3.6.2. Next, we demonstrate the adaptability of the proposed
method on higher-dimensional datasets based on ImageNet and analyze the impact of differ-
ent mixing modes on improving model robustness in Section 3.6.3. Next, we evaluate the
robustness generalized to perceptual attacks in Section 3.6.4. Finally, we presented the time
of the proposed method in Section 3.6.5.
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Figure 3.4 Accuracy of robust trained PreActResNets on various attacks (CIFAR-10).

3.6.1 Perception Analysis

Realistic perception is an essential requirement for augmented examples generated by
mixup methods because unnatural semantic information in mixed examples can mislead the
classifier and weaken the generalization of the model [45-46] . Experimental results show that
the manifold learned by LarepMixup is almost identical to the underlying data manifold
of the CIFAR-10 dataset, and the mixed examples synthesized by LarepMixup have mean-
ingful semantics.

On-manifold Dataset. We train a StyleGAN2-ADA network with a 512-dimensional
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Figure 3.5 Accuracy of robust trained PreActResNets on various attacks (SVHN).

latent space on CIFAR-10. We then optimize a 512-dimensional latent representation vector
for each training and testing sample to build a manifold representation set for CIFAR-10.
Similarly, we also build respective on-manifold representation sets for SVHN and ImageNet-
Mixed10, respectively. Taking CIFRA-10 as an example, it can be seen from Figure 3.6 (a)
that when the testing samples are projected into the latent space learned on the training set,
the reconstructed samples from latent representations are almost the same as the original
test samples. This indicates that the data distribution supported by our learned manifold is
close to the true data distribution. Moreover, we generate unknown on-manifold samples by
randomly sampling representations in the manifold embedding space, as shown in Figure 3.6
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(a) CIFAR-10 dataset projection.

x \in Dtrain G(z)

trainset testset

x G(z)

randomly sample

x G(z)

x \in Dtest G(z) Randomly sample z G(z)

x1

x2

x1

x2

x1

x2

x1

x2

x in Dtrain G(z) x in Dtest G(z) G(z) xi xj convex mix mask mix xj xk convex mix mask mixxi

x in Dtrain G(z) x in Dtest G(z) G(z) xi xj convex mix mask mix xj xk convex mix mask mixxiG(z)

(b) On-manifold CIFAR-10 sampling.
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(c) Dual LarepMixup.
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(d) Ternary LarepMixup.

Figure 3.6 On-manifold dataset and mixed samples.

(b). The natural semantics of synthesized samples also prove that themanifoldwe constructed
approximates the underlying data manifold.

Mixed Examples. The perception of convex mixed samples and binary mask mixed
samples are shown in Figure 3.6 (c) and (d), respectively. For convex mixing, the synthesized
examples showmore smooth mixed characteristics between source samples, like luma, color,
and contour, since the combination coefficient α can take a value from the continuous range,
[0, 1]. Each specific feature in the convex mixed image that corresponds to a dimension of
the latent representation will show the merged value of the scaled features of the source
samples with a high probability. For binary mask mixing, the synthesized examples show
fewer transitions between source features because the combination coefficient m is discrete
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and can only be taken from the binary set {0, 1}n. Each specific feature in the binary mask
mixed image preserves either the feature of one source sample or the other.

3.6.2 Evaluation under Different Attack Budgets

To demonstrate the effectiveness of LarepMixup in improving the off-manifold and
on-manifold adversarial robustness of the model under different adversary attack strengths,
we evaluate the top-1 accuracy of the classifier on PGD and OM-PGD AEs with different
budgets of l∞-bounded perturbations. For the PGD attack, the single-step budget is 0.02.
For the OM-PGD attack, it is 0.005.
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Figure 3.7 Visualization of PGD and OM-PGD adversarial examples.

The perception of PGD and OM-PGD adversarial examples (AEs) under varying per-
turbation strengths is shown in Figure 3.7. In Figure 3.7 (a) and (c), off-manifold samples
(PGD) display granular noise, which is caused by the adversarial perturbation directly super-
imposed on the pixels. In Figure 3.7 (b) and (d), on-manifold samples (OM-PGD) exhibit
smooth noise due to perturbations on low-dimensional latent representations, affecting high-
level features like direction and style. As the perturbation budget increases, semantic changes
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become more drastic. However, as emphasized in [40] , care needs to be taken that when im-
plementing on-manifold attacks, label invariance should be considered. Careful control of
the perturbation budget is needed to avoid changing the original class manifold, which would
create invalid on-manifold AEs, as shown in the last two columns of Figure 3.7 (d).

Figure 3.8 Accuracy of various models under different attack budgets (CIFAR-10).
PGD budget ϵ and OM-PGD budget η are set sequentially as {0.02, 0.05, 0.1, 0.2, 0.3}.

It can be seen from Figure 3.8 and Figure 3.9 that LarepMixup training notably en-
hances robustness against different off/on-manifold adversarial attack strengths on theCIFAR-
10 and SVHN datasets. For PGD on CIFAR-10 with ϵ set to 0.02, 0.05, 0.1, 0.2, 0.3, the av-
erage accuracy of the seven models improves by 14.54%, 28.36%, 32.32%, 14.57%, 6.78%,
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Figure 3.9 Accuracy of various models under different attack budgets (SVHN).
PGD budget ϵ and OM-PGD budget η are set sequentially as {0.02, 0.05, 0.1, 0.2, 0.3}.

respectively. For OM-PGD on CIFAR-10 with η set to 0.02, 0.05, 0.1, 0.2, 0.3, the average
accuracy of the seven models improves by 10.18%, 19.93%, 11.64%, 3.60%, 2.26%, respec-
tively. Under the same settings, for PGD on SVHN, the average classification accuracy of
the seven models improves by 12.51%, 24.67%, 29.27%, 18.13%, 12.38%, respectively. For
OM-PGD on SVHN, the average classification accuracy of the seven models improves by
10.27%, 17.93%, 12.21%, 4.53%, 3.05%, respectively.

A remarkable observation is that when the budget η is too large, e.g., exceeds 0.1, the
improvement in robust accuracy for on-manifold attacks diminishes. In conjunction with Fig-

64



Chapter III Adversarial Robustness Generalization with Latent Representation Mixup

ure 3.7, we deduce that this occurs because an excessive attack budget generates some invalid
OM-PGD attack samples. Consequently, in our following experiments, we employed on-
manifold AEs with a 0.1 budget, under which invalid OM-FGSM and OM-PGD samples are
seldom observed in CIFAR-10 and SVHN datasets.

3.6.3 Evaluation under Different Mixing Modes

To evaluate the efficacy of LarepMixup in improving adversarial robustness across
different mixing modes, we alternate between dual/ternary convex mixing and dual/ternary
mask mixing. We conduct experiments using the ImageNet-Mixed10 dataset to verify the
proposed method’s applicability to high-dimensional datasets. For each adversarial attack,
we conduct proposed training three times under the same settings and take the average as
the final result. The initial learning rate, epoch number, and batch size are 0.01, 40, and 32,
respectively. The adversarial perturbation budget is 0.02. The parameters β of the Beta(β)
distribution and γ of the Dirichlet(γ) distribution are hyperparameters, set by default to (1.0,
1.0) and (1.0, 1.0, 1.0), respectively. The positional relationship between source data points
and mixed data points constructed using different coefficients is illustrated in Figure 3.10.

(a) Two source data points P1, P2 and 60 mixed data points.

(b) Three source data points P1, P2, P3 and 4000 mixed data points

Figure 3.10 Effect of sampling distribution on the position of interpolation points.

Experimental results evaluated in different modes are shown in Table 3.7. For off-
manifold adversarial attacks, the robustness improvement from LarepMixup is not much
different in convex mixing and mask mixing. However, for on-manifold adversarial attacks,
the advantages of convex mixing are obvious. Regarding the number of mixed source sam-
ples, {Dual, Ternary}, there is little difference in accuracy improvement between them. In

65



Doctoral Dissertation of XIDIAN UNIVERSITY

general, for FGSM, PGD, AutoAttack, DeepFool, CW, OM-FGSM, and OM-PGD attacks,
the accuracy rate of the four mixing modes increased by 2.90%, 3.15%, 3.67%, 75.67%,
83.71%, 16.62%, 22.27%, respectively.
Table 3.7 Robust accuracy of PreActResNet-18 under different mixing modes (ImageNet-Mixed10)

Method Vanilla
Dual-LarepMixup Ternary-LarepMixup

Convex Mask Convex Mask

Clean 90.47 90.57±0.55 90.89±0.35 90.67±0.21 90.24±1.25
FGSM 13.93 17.09±0.29 16.21±0.14 16.71±0.34 17.29±0.94
PGD 2.00 5.38±0.81 4.68±0.45 4.73±0.69 5.81±1.32
AutoAttack 0.00 3.74±0.19 3.68±0.29 3.60±0.18 3.66±0.04
DeepFool 8.87 85.38±0.19 83.98±0.42 84.89±0.18 83.93±1.00
CW 0.10 84.61±0.30 83.16±0.52 84.19±0.47 83.28±0.62
OM-FGSM 26.90 59.91±1.30 28.61±5.58 57.36±1.89 28.21±0.98
OM-PGD 20.43 58.76±1.30 27.99±5.92 56.59±1.87 27.47±1.44

3.6.4 Evaluation with Perceptual Attack Examples

In addition to specific adversarial attacks, perceptual attacks have been identified as a
means to evaluate model robustness against potential attacks [41,121] . These attacks primarily
use global color shifts and image filtering on normal images to create perturbed images. We
consider four perceptual attacks: Fog, Snow, Elastic, and JPEG. For each perceptual attack,
we conduct LarepMixup training thrice with the same settings and average the results.
The initial learning rate, epochs number, batch size, and beta distribution parameters are
0.01, 40, 256, (1.0, 1.0), respectively. We conduct experiments on seven models using the
CIFAR-10 and SVHN datasets. Taking the AlexNet as an example, the perception of four
types of perceptual attack examples on CIFAR-10 are shown in Figure 3.11.

Original Fog Snow Elastic JPEG

Clean

Fog

Snow

Elastic

JPEG

Figure 3.11 Percaptual attack examples.
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Figure 3.12 Accuracy of various models on perceptual attacks (CIFAR-10).

According to Figure 3.12, the accuracy of the classifiers on CIFAR-10 perceptual attacks
has been greatly improved with LarepMixup, with the average accuracy of seven classi-
fiers on Fog, Snow, Elastic, and JPEG samples increased by 28.17%, 5.19%, 31.79%, and
29.53%, respectively. At the same time, the accuracy of the seven classifiers on the clean test
set dropped slightly, with an average reduction of 2.11%. Additionally, Figure 3.13 shows
the improvement of the robustness of the classifiers on SVHN perceptual attacks, with the
average accuracy of seven classifiers on Fog, Snow, Elastic, and JPEG samples increased by
17.89%, 14.42%, 35.87%, and 47.10%, respectively. Since natural samples are constructed
by superimposing perturbations on feature vectors in input space, it is reasonable to regard
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Figure 3.13 Accuracy of various models on perceptual attacks (SVHN).

them as unseen attack samples outside the manifold. It can be seen that the model trained by
LarepMixup achieves generalized robustness to unseen off-manifold attacks.

3.6.5 Evaluation of Time Cost

In our scheme, the training of the StyleGAN model is separated from the training of the
robust classifier. Once a StyleGAN model has been trained well on a given dataset, there-
after, it will only be used as a mapping function from low-dimensional representation to
high-dimensional input to participating in the LarepMixup training of any target network.
Taking the CIFAR-10 dataset as an example, we trained the StyleGAN model for 280 epochs
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on the CIFAR-10 training set, each epoch took about 218 seconds. We spent a total of 16.9
hours training a StyleGAN model, realizing the final effect that a latent variable randomly
sampled in the hidden space of StyleGAN can be mapped to a sample with real semantics
in the input space. Then, we constructed the on-manifold CIFAR-10 datasets consisting of
latent representations z and corresponding labels y. From the perspective of training a robust
network, the above process can be regarded as a preprocessing process. After constructing
the latent representation dataset of CIFAR-10, we then use it to build various robust networks
on CIFAR-10. Taking the WideResNet-28-10 as an example, the time cost of LarepMixup

training was almost 700 seconds per epoch. We trained the robust WideResNet-28-10 model
for 40 epochs, a total of almost 7.7 hours.

3.7 Summary

In this chapter, we investigate the generalization of the adversarial robustness of DNNs
on off-manifold and on-manifold adversarial attacks. The main idea of our work is to mix
latent representations lying on the low-dimensional manifold of the training set to synthesize
mixed samples that capture latent variation factors in the dataset, and use them as augmented
examples to train amodel that can stably recognize data points adjacent to the decision bound-
ary. Extensive evaluations show that even without any adversary information, our method
LarepMixup can significantly alleviate the sensitivity of the model to multiple attacks in
the input space and latent space. While our framework is illustrated with images, it can
be extended to other input domains by replacing the StyleGAN-based manifold embedding
designed for images with appropriate representation encoding algorithms suitable for other
input features, such as Autoencoder for network traffic features and BERT for text features.
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Chapter IV Adversarial Robustness Certification with Multi-order
Adaptive Randomized Smoothing

Deep neural networks (DNNs) are increasingly utilized in network intrusion detection
(NID) due to their high detection accuracy and adaptability to evolving cyber threats. How-
ever, these DNNs-based NID systems face a similar challenge in other DNN-based classi-
fiers: their vulnerability to adversarial attacks (a.k.a evasion attacks) designed to evade de-
tection. To ensure adversarial robustness against various perturbations, there is a growing
focus on certified defenses that can provide robustness guarantees for all potential perturbed
inputs within the lp-bounded region. Unfortunately, unlike existing methods focusing on ho-
mogeneous image feature spaces, the progress in adversarial robustness certification for the
network traffic domain, characterized by heterogeneous features, has been limited.

To address such a gap, in this chapter, we study the certification technique for adver-
sarial robustness of DNNs and propose a certified defense framework, Multi-order Adaptive
Randomized Smoothing (MARS), designed to be applicable to heterogeneous input features,
such as network traffic data. First, we introduce a designed adaptive randomized smoothing
algorithm that leverages zero-order and first-order information to calculate robust radii, pro-
viding tighter lower bounds of robustness than existingmethods. Then, we present a proposed
dimension-wise robust radius calculation algorithm based on the sensitivity of each feature
dimension, enabling fine-grained robustness certification for heterogeneous input features.

MARS has three important characteristics: (i) It dynamically expands the certified robust
region toward high confidence by using the zero-order output and first-order gradient infor-
mation of the smoothed classifier. (ii) It adaptively samples random noise according to the
decision boundary by optimizing the parameters of a smoothing distribution specific to each
traffic feature dimension. (iii) It supports multiple lp norm-bounded robustness guarantees
according to customized requirements. Finally, we present experimental results on various
network intrusion detectors and datasets, demonstrating that the proposed method enhances
certification tightness. It provides lp certified radii that constrain larger perturbation regions
than the leading robustness certification approach for network intrusion detectors. Moreover,
it improves the empirical adversarial robustness against diverse adversarial attacks.
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4.1 Overview

Deep learning (DL)-based network intrusion detectors (NIDs) excel in detecting com-
plex and evolving cyber threats by leveraging the capability of deep neural networks (DNNs)
to analyze large-scale and diverse traffic data [5-6] . However, previous work has shown that
network traffic classifiers based on DNNs [18-19] are as vulnerable to adversarial attacks using
adversarial examples (AEs) as text [124] , image [16-17] , speech [125] , and video classifiers [126-127] .
An attacker can transform an otherwise correctly classified clean input into an adversarial ex-
ample by subtly adding perturbations [14-15] , resulting in the victim classifier misclassifying
these AEs. Adversarially modified malicious traffic usually mimics normal traffic patterns
with constrained changes, thereby easily evading detection and keeping the features as similar
as possible to clean samples [20] .

Empirical defense methods designed to enhance the robustness of DNNs, such as adver-
sarial training [9,14] , feature denoising [23-24] , and model ensembling [128-129] , have been fully
verified in the DL field, and their applicability has also been explored for network intru-
sion detection [21] . However, a common problem in various domains is that the robustness
achieved by these heuristic strategy-driven empirical defenses is likely to be bypassed by new
adversarial attack approaches [79,82] . Such a shortcoming allows attackers to easily evade the
“supposedly robust” model through adaptive attacks [57] , leading to an endless arms race of
adversarial attacks and defenses. Moreover, in high-risk applications like autonomous driv-
ing, healthcare, and network intrusion detection, it is difficult to establish a high level of trust
in the output results of the model based on empirical defenses.

Recognizing these shortcomings, research on the robustness of security-sensitive DL
models has gradually shifted to certified defense [58] . Such a defense aims to calculate a
certified radius for each input, to indicate that the model’s predictions remain consistent for
any variant of the current input within the region bounded by this radius, see Figure 2.4.
The certified radius is provided as a robustness guarantee along with the input’s predictions.
For the same model and input sample, a larger certified radius obtained indicates a tighter
robustness guarantee provided by the certified defense method, as defined in Definition 6.
Incomplete certification, which aims to compute the lower bound of the exact robust radius
of the model as the certified radius, avoids the NP-complete challenge of computing the
exact robust radius of a DNN in complete certification [58,69] . However, a notable drawback
of incomplete certification is that the robustness guarantee provided is loose; that is, the
calculated lower bound is far from the exact robust radius.

To compute the non-trivial certified radius for DNNs, many approaches have been pro-
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posed to upgrade incomplete certification algorithms for image classifiers, including deter-
ministic certification, such as activation polytope [70-74] , interval bound propagation [130-132] ,
relaxation [133-136] , neuron branching and bounding [61,64-66] , and probabilistic certification,
such as differential privacy [77-78] and randomized smoothing [69,79-81,137] . Given that an ideal
certified defense against adversarial attacks should be model agnostic, that is, it should be
applicable to various types of DL models without modifying or being limited by the spe-
cific internal structures of these models, randomized smoothing-based approaches have been
proven to be the most competitive in terms of tighter and architecturally scalable certification
in the field of image [58] , text [138] , and graph [139] classification.

Motivations. However, certified defense efforts for network intrusion detection have
been minimal. The main challenges arise from the heterogeneity of network traffic fea-
tures, where different dimensions carry varying semantics and characteristics. In contrast
to image features representing pixel values, network traffic feature dimensions involve pro-
tocol types, destination network services, timestamps, data packet counts, flow-byte rates,
and more. Additionally, the diversity of NID architectures also introduces difficulties to
certified defenses. In binary/multi-class classification or known/unknown anomaly detec-
tion tasks, the detection principles employed lead to the utilization of various DNN models,
such as CADE (Contrastive Autoencoder for Drifting detection and Explanation) [6] , ACID
(Adaptive Clustering-based Intrusion Detection) [5] , etc. This imposes strict demands on the
scalability of certification methods across diverse model architectures.

Until now, only one approach, BARS (Boundary-Adaptive Randomized Smoothing) [82] ,
has been proposed to certify the robustness of network traffic classifiers. It obtained larger
l2 certified radii than neuron branching and bounding methods by utilizing the zero-order
information-based randomized smoothing. Unfortunately, its l2 robustness guarantee is proven
relatively loose, and it lacks certification for other lp norms-bounded robustness guarantees.
Providing multiple lp-measured certified radii can help in deeply analyzing model vulnera-
bilities and boosting general robustness against adversarial attacks using diverse norms like
l1 or l∞ in different contexts. Moreover, BARS only handles adversarial attacks, neglecting
some natural corruptions, such as Latency and PacketLoss, that may be induced by random
noise in the network environment.

Our Method. To address the above shortcomings, we proposeMARS, a novel framework
that certifies the robustness of DNN-based NIDs using Multi-order Adaptive Randomized
Smoothing, as illustrated in Figure 4.1. The capabilities of MARS are demonstrated in three
main aspects.
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Figure 4.1 Certified radius obtained through MARS.
cA denotes the class with the highest confidence returned by the smoothed classifier Fsmooth on the input. xa and xb are
two inputs predicted as different champion classes, c1 and c2. The solid white line outlines the certified region relying
solely on zero-order output F cA

smooth(x). The blue arrow indicates the tangent direction of F cA
smooth(x) at x. The green

arrow represents the gradient vector∇F cA
smooth(x). The dotted white line outlines the certified region utilizing zero-order

and a gradient with zero magnitude. The yellow and orange dotted lines outline the certified regions employing zero-order
and a gradient with non-zero magnitude, where orange corresponds to a larger gradient magnitude.

• First, to adapt to the heterogeneity of d-dimensional network traffic features, we design
a dimension-wise certified radius calculation method by expanding the real value of
the certified radius into a certified radius vector for the network traffic domain, and
quantifying the radius contribution of each dimension based on the dimensional feature
sensitivity analysis.

• Then, to tighten the robustness guarantee, we adopt a two-step strategy: (i) We opti-
mize the dimensional parameters of the multivariate smoothing distribution so that the
certification algorithm can adaptively sample dense noised samples near the boundary
for probability statistics. (ii) We iteratively move the symmetry center of the lp cer-
tified robust area along the gradient direction of the smoothed classifier, that is, the
direction in which the confidence score of the output class increases, and use binary
search to estimate the upper and lower bounds of the interval of certified radius, so that
the certified radius can be further improved.

• Finally, to provide diverse lp certificates, we construct a smoothing distribution set
consisting of Gaussian, Laplacian, and Uniform distributions, and implement specific
parameter optimization and first-order gradient estimation for each distribution.

We compareMARSwith SOTA traffic-specific certificationBARS [82] , and image-specific
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methodsVanilla Randomized Smoothing (VRS) [79] and First Order-basedRandomized Smooth-
ing (FRS) [81] , in terms of the certified radius, certified accuracy, robust accuracy, clean ac-
curacy, and time overhead.

In this chapter, we make the following contributions:

• We propose MARS — a robustness certification framework, to certify the robust ra-
dius of DNN-based NIDs without requiring any modification to the model structure.
It achieves a tighter l2 robustness guarantee (12.23% average increase compared to
BARS) and extends certification from l2 to l1 and l∞ guarantees compared to other
advanced methods.

• We are the first to utilize the high-order information of the smoothed classifier to guide
the expansion of the certified region obtained based on the zero-order output informa-
tion in network traffic classification. Our approach demonstrates improved tightness
in various lp robustness guarantees.

• We are the first to introduce a threat model of random noise-based natural corrup-
tions in addition to the threat of adversarial attacks in NID robustness certification.
Our experimental results confirm that MARS significantly enhances robustness against
adversarial attacks (33.93% higher on l∞-PGD, 13.79% higher on l2-PGD, 10.01%
higher on l1-EAD) and natural corruptions (16.87% higher on Latency, 19.85% higher
on PacketLoss) compared to the base detection model.

4.2 Problem Formulation

4.2.1 Threat Model

We consider two robustness threats faced by DNNs: (i) adversarial attacks — deliber-
ately launched by attackers using adversarial examples (AEs), and (ii) natural corruptions —
unintentionally caused distribution shift by random noise in the network environment.

Adversarial Attacks. We first focus on white-box adversarial attacks. The adversary
creates strong lp AEs based on complete knowledge of the victim network traffic classifier fθ.
By assuming that the attacker possesses full knowledge of the model, we aim to simulate a
most powerful threat in the adversarial scenario where the adversary has maximum visibility
into the model internals. This enables the evaluation of the robustness of the model against
sophisticated attacks, leveraging the model’s inner workings while also revealing potential
vulnerabilities of the target model. Although adversarial attacks can target clean samples
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belonging to any category, in network intrusion detection, especially in multi-classification
scenarios, the more realistic situation is that the evasion goal only includes causing the orig-
inally malicious traffic to be classified as benign, but does not include causing originally
benign traffic to be classified as malicious or causing malicious traffic to be classified as an-
other attack type. Thus, we assume that the adversary will launch adversarial attacks only
on originally malicious traffic, where the target label ytarget in Definition 5 is set to benign.

Natural Corruptions We also consider the robustness of the classifier to distribution
shifts arising from natural variations in datasets. Natural corruptions result from uncontrol-
lable environmental factors, such as lighting changes in images or recording device alter-
ations in speech. As the first work to consider natural corruptions in robustness certification
in the traffic domain, we focus on the distribution shifts caused by random noise added to
time-related and quantity-related traffic features. By assuming noise background in temporal
and spatial characteristics, we aim tomimic a scenario where natural corruptions like Latency
and PacketLoss arise from network congestion or electromagnetic interference. Unlike ad-
versarial attacks, these corruptions are typically unintentional; thus both clean benign and
malicious traffic can be corrupted.

With these considerations, the robustness of network traffic classifiers against adver-
sarial and natural perturbations on the input can be certified and empirically demonstrated,
ensuring effective operation amid unexpected network disturbances.

4.2.2 Research Goal

Our design goal is to provide the traffic classifier prediction with a robustness guarantee
that reflects the tight lower bound of the robustness of the model on any unknown perturba-
tions. We need to address the following three issues.

Problem 1. Formally define a certified radius as the lp robustness guarantee that can
constrain heterogeneous network traffic features. Homogeneous image feature vectors typ-
ically share semantics and value ranges across dimensions, resulting in a single real-value
certified radiusR, constraining all dimensions concurrently. Conversely, heterogeneous traf-
fic feature vectors exhibit varied semantics, value ranges, and significance in traffic analysis
and noise tolerance. Thus, a network traffic-specific certified radius form must be designed
to reflect robust regions within heterogeneous feature dimensions.

Problem 2. Tighten the l2 certified radius to provide a stricter l2 robustness guaran-
tee than the only existing certification approach for NIDs. A larger certified radius signifies
higher prediction credibility of the model, which is essential in applications demanding high-
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confidence results. For NIDs, detection combined with a certified radius can minimize false
positives and false negatives. For example, if it is required that only predictions with certi-
fied radii higher than the robust radius threshold on the predicted malicious category trigger
anomaly warnings, alert fatigue can be alleviated.

Problem 3. The l1 and l∞ robustness guarantees of the model on a given input must
also be provided. While l2 attacks are common, adversaries may employ other norms (e.g.,
l1, l∞) for escape purposes. It is vital to have a comprehensive approach for calculating di-
verse lp measured certified radii to assess the overall robustness. Especially when confronting
unknown types of adversarial attacks, comparing various lp certified radii is particularly valu-
able for thoroughly analyzing the model weaknesses and enhancing lp robustness.

4.2.3 Key Challenge

The approaches and challenges to address these problems are considered below.
Approach Direction to Problem 1. The solution we consider is to extend the real-value

certified radius R to a vector (R1, ..., Rd) ∈ Rd, where Ri denotes the dimension-wise ro-
bustness guarantee for the i-th feature xi of the input x. Yet, computing the certified radius
vector R poses a challenge.

Challenge 1. Efficiently calculate the dimension-wise certified radius Ri for each di-
mension of the input x = (x1, ..., xd) ∈ Rd. An easy way to calculate Ri is employing
randomized smoothing separately for each dimension by adding noise to feature xi while
keeping other dimensions constant. However, since we assume that network traffic feature
dimensions are not independent, this approach has two issues: (i) The certified radius vector
composed of the independently calculated dimension-wise certified radius represents the up-
per bound of the exact certified radius vector rather than the lower bound, because it does not
account for the correlation between different feature dimensions of network traffic, such as
xi and xj . (ii) Performing randomized smoothing independently for each feature dimension
increases the time cost significantly by a factor of d, making it impractical for network traffic
classification tasks with real-time requirements.

Approach Direction to Problem 2. To tighten the l2 robustness guarantee, the solu-
tion we envision is to improve the randomized smoothing-based certification algorithm by
introducing high-order information about the smoothed classifier. Yet, this solution requires
addressing the following challenge.

Challenge 2. Characterize the correlation between the first-order information of a
smoothed classifier and the certified radius and derive a tighter robustness guarantee by ex-
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ploiting it. The first-order gradient information of the classification function on the input
reveals how subtle changes in the input affect predictions. This valuable insight could deter-
mine robust regions in smoothed classifiers. However, this area remains unexplored in NIDs
and is in the early stage of image classification. The challenge is the lack of analysis connect-
ing this information to the certified radius, impeding its use as a supplementary condition for
certified radius calculations.

Approach Direction to Problem 3. The solution we consider is to select distinct smooth-
ing distributions for various lp guarantees to align the sampling area of the noise samples used
for smoothing with the lp-measured surroundings of the input x. Nevertheless, the challenge
is as follows.

Challenge 3. For various lp perturbations, choose suitable smoothing distribution types
and parameter settings to obtain non-trivial tight robustness lower bounds. While Gaussian
distributions have proven effective for l2 perturbations when combined with zero-order in-
formation, they might not always be optimal for l1 and l∞ attacks, especially when first-order
information is also used. Hence, it is essential to integrate prior knowledge to generate can-
didates for appropriate smoothing distributions and to experimentally ascertain whether the
zero-order or first-order information under these distributions is appropriate for various lp
robustness certifications.

4.3 Design of Method MARS

This section introduces the design of the proposed certified defense method, Multi-
order Adaptive Randomized Smoothing (MARS), to provide non-trivial tight lp norm-bounded
robustness guarantees for heterogeneous input features, such as network traffic data. First,
we introduce the basic architecture of the smoothed network traffic classifier. Then, we detail
the certification algorithm that leverages zero-order and first-order information to calculate
robust radii. Next, Finally, we present a dimension-wise robust radius calculation algorithm
based on the sensitivity of each feature dimension.

4.3.1 Architecture of the Smoothed Classifier

The basic architecture of a smoothed network traffic classifier (e.g., a Network Intrusion
Detector (NID)) is shown in Figure 4.2. The main difference between the smoothed classier
Fsmooth and the base classier F is that the predicted label of Fsmooth on the input x is the
champion class cA, which is the most often predicted class by the base classifier F (x) across
a set of noised samples x+ η.
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Figure 4.2 Architecture of the smoothed network traffic classifier.
Prediction Procedure: n = nsmall, identify the champion class cA that is predicted most times among n noised samples.

Certification Procedure: n = nlarge, count the number of noised samples predicted as cA to estimate
PA = P(Fsmooth(x) = cA) and PB = P(Fsmooth(x) = cB).

During the inference phase, the operation of the smoothed classifier involves two pro-
cesses: prediction and verification.

Prediction Procedure. This procedure aims to determine the class by the smoothed
classifier for the input x. It begins by choosing a smoothing distribution D with mean 0.
Then, nsmall (defaults to 100) noise vectors η are sampled and added to x to obtain nsmall

noised samples. The base classifier predicts them and identifies the champion class cA and
runner-up class cB.

Certification Procedure. This procedure aims to calculate a lp-measured certified ra-
dius R. First, nlarge (defaults to 10, 000) noises are randomly sampled from the smooth-
ing distribution D and sequentially added to the input x to obtain nlarge noised samples.
Then, the number of these samples predicted as the champion class cA is recorded as nA =∑nlarge

k=1 I[F (x+ ηk) = cA]. With nlarge and nA, the certified radius is then calculated using
the zero-order output and first-order gradient of the smoothed classifier.

4.3.2 Multi-order Adaptive Robustness Certification

To achieve tight robustness guarantees for DNN models on heterogeneous inputs, our
proposed adaptive robustness certification method based on multi-order information involves
two stages: (i) Smoothing Distribution Parameter Optimization and (ii) Gradient-based Cer-
tified Radius Calculation.

Stage 1: Smoothing Distribution Parameters Optimization. During the training
phase, we optimize the parameters of the smoothing distribution used for sampling noise
η, making noised samples x+ η closer to the decision boundary.

The difference between a smoothed network traffic classifier and a smoothed image
classifier is that the noise values ηi in each dimension of the noise vector η are sampled from
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(a) Same σ across dimensions (b) Different σ across dimensions (c) Different σ across dimensions

Figure 4.3 PDF of binary Gaussian distribution N (µ, σ).

a dimension-specific optimized distribution, where all dimensions of heterogeneous x are
matched to the optimal smoothing distribution parameters ϑ. Take the Gaussian distribution
as an example. Before the optimization, the d-dimensional noise vector η is sampled from
the multivariate standard Gaussian distribution Dstd = N (µ = O, σ2 = I), where O and I

denote the d-dimensional full-zero vector and the full-one vector, respectively. After the op-
timization, the noise vector η is sampled from the optimized multivariate Gaussian distribu-
tion Dϑ = N (µ = O, σ2 = ϑI). Parameters ϑ optimized dimensionally for the multivariate
distribution facilitate an adaptive approach to the classification boundary in feature space.
Figure 4.3 shows the Probability Density Function (PDF) of the smoothing distribution with
the same or different σ values across dimensions.

The optimization of ϑ = ϑshape×ϑscale involves two steps: distribution shape optimiza-
tion and distribution scale optimization.

Distribution Shape Optimization. The aim is to optimize the vector parameter ϑshape

in a multivariate distribution, keeping ϑscale = 1. This encourages the sampling region of
noised samples x + η to be close to the decision boundary of the class predicted by the
classifier F for x by optimizing Eq. (4-1).

min
ϑ

Ex∼Dtrain
I[F (x+ ηϑ) ̸= F (x)]L(f(x+ ηϑ), F (x))

−I[F (x+ ηϑ) = F (x)]L(f(x+ ηϑ), F (x)),
(4-1)

where ϑ = ϑshape × 1 and I is the indicator function.
Distribution Scale Optimization. The optimization goal of the distribution scale, as

defined in Eq. (4-2), is to expand the coverage of the sampling area by adjusting the scalar
parameter ϑscale of the multivariate distribution while maintaining the contour shape of the
sampling area by fixing ϑshape to the optimized value ϑ∗

shape, so that the certified radius R
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can be as large as possible.

max
ϑ

R =
σ

2
(Φ−1(PA)− Φ−1(PB)) = max

ϑ

ϑ

2
(Φ−1(Pη∼Dstd

(F (x+ ϑη) = cA))− Φ−1(Pη∼Dstd
(F (x+ ϑη) = cB)))

(4-2)

Stage 2: Gradient-based Certified Radius Calculation. During the inference phase,
we focus on calculating the certified radius using the zero-order and first-order informa-
tion together. we calculate the magnitude of the first-order gradient ||∇F c

smooth(x)||p of the
smoothed classifier w.r.t x and expand the certified robust region along the direction in which
the confidence score F c

smooth increases. The zero-order information we use is the statistical
probability PA = P(Fsmooth(x) = cA) = F cA

smooth(x) of the smoothed classifier when predict-
ing x as the champion class cA. The first-order information we use is the gradient magnitude
||∇F cA

smooth||p of the Fsmooth. The overall calculation process is detailed in Algorithm 4.1,
which can be divided into two steps: Probability-based Radius Calculation and Gradient-
based Radius Extension.

Step 1: Probability-based Radius Calculation. This step is to calculate the lower
bound of the perturbation radius R that the smoothed classifier can tolerate on x based on
F cA
smooth(x), which is the estimated probabilities of the smoothed classifier predicting x as

the champion class. Suppose the most probable class cA is returned by Fsmooth with proba-
bility PA = Pη∼D(F (x+ η) = cA), and the runner-up class cB is returned with probability
PB = Pη∼D(F (x+ η) = cB). We need to estimate the PA and PB, which represent the
lower bound of PA and the upper bound of PB, respectively. PA is estimated like [79] , us-
ing LowerConfidenceBound(nlarge, nA, α), which first calculates the interval [PA, PA]

wherePA holds with a probability of at least (1−α) for k-fold Binomial(nlarge, PA) sampling
and then returns the left boundary of the interval. Then simply take PB = 1− PA. Like [79] ,
the certified radius Rzero based only on the zero-order information is calculated according
to Eq. (4-3):

Rzero =
σ

2
(Φ−1(PA)− Φ−1(PB)) (4-3)

whereΦ−1 is the inverse of the cumulative distribution function (CDF) of the standard Gaus-
sian DistributionN (O, I). The size ofRzero is shown in the white solid line surrounding the
input sample. xa or input sample xb in Figure 4.1.

Step 2: Gradient-based Radius Extension. The goal of this step is to move and ex-
pand the certified robust region with radius Rzero along the gradient direction ∇F cA

smooth at
x. We can see from Figure 4.1 that the gradient-based certification breaks the symmetry
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Algorithm 4.1 Multi-order Robustness Certification

Input: test samples (x, y) ∈ Dtest, base classifier F with the classification function fθ, smoothed classi-
fier Fsmooth

Output: overall certified radius R for each test sample
1: for j = 1 to len(Dtest) do
2: load one test example xj , yj ;
3: count champion class cA according to Eq. (2-33);
4: sample nlarge noise samples

{
η1, ..., ηnlarge

}
from smoothing distribution D;

5: count nA ←
∑nlarge

k=1 I[Fθ(x+ ηk) = cA];
6: estimate PA by LowerConfidenceBound(nlarge, nA, α) that estimates the interval [PA, PA] where

PA holds;
7: PB ← 1− PA;
8: if PA < 0.5 then
9: output abstain certification;
10: else if PA ≥ 0.5 then
11: calculate the certified radius Rzero;
12: estimate gradient of the smoothed classifier in the champion class dimension cA on x:

∇F cA
smooth(x);

13: calculate the magnitude of the gradient;
14: if ||∇F cA

smooth(x)||p ≥ φ(Rzero) then
15: certified radius R = Rzero;
16: else if ||∇F cA(x)||p < φ(Rzero) then
17: certified radius R = Rfirst calculated according to Eq. (4-4);
18: end if
19: output R for test sample x.
20: end if
21: end for

of the certified region centered at x and admits non-isotropic certified radius bounds. As
the gradient direction reflects the area where the prediction confidence F cA

smooth is higher
than at the current data point x, moving the center x of the certified region along the gra-
dient direction and exploring a larger radius is conducive to further expanding the origi-
nal certified region. Take a l2 robust radius as an example. Refer to [81] , we obtain the fi-
nal certified radius R by solving the system of simultaneous equations shown in Eq. (4-4).
Specifically, our goal is to reduce the length of the interval [Rlow, Rhigh] with an initial value
of [Rlow0 = Rzero, Rhigh0

= φ(
(1+PA)

2
)] by binary searching, where φ is the PDF of the

smoothing distribution. To this end, we continuously increase Rlow, reduce Rhigh, and take
the r = (Rlow+Rhigh)

2
as the certified radius which matches the requirement in Eq. (4-4), where
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z1 and z2 are fixed. The search stops when Rhigh −Rlow ≤ 0.

Φ(z1 −R)− Φ(z2 −R) = 0.5

Φ(z1)− Φ(z2) ≤ Fsmooth(x) = PA

φ(z2)− φ(z1) ≥ σ||∇F cA
smooth(x)||2

(4-4)

In this way, we achieve a real-value overall certified radiusR using themulti-order information-
based randomized smoothing, which provides an equal certified size for all dimensions.

4.3.3 Dimensional Radius Weight Calculation

To calculate the certified radius vector (R1, ..., Rd) for an input x = (x1, ..., xd) with
heterogeneous features while considering correlations between feature dimensions, we weigh
the overall certified radius R previously achieved based on the robustness contribution of
each feature dimension. The dimension-wise certified radius is then given by Ri = wi × R,
where wi represents the weight of the contribution for each feature dimension. The certified
radius weight wi is obtained through two steps: Dimensional Feature Sensitivity Analysis
and Dimensional Radius Contribution Quantification. Algorithm 4.2 details the calculation.

Step 1: Dimensional Feature Sensitivity Analysis. In this step, we quantify the sen-
sitivity of each dimension of the input feature vector x to the prediction score on the output
class. For all dimensions, the more sensitive features are more likely to change the output
results. Therefore, sensitive features are also important features for NID. We calculate a sen-
sitivity score si for each dimension of the input sample x belonging to class c according to
si =

d(fc
θ (x))

d(xi)
, where i denotes the i-th dimension. Since our goal is to obtain a sensitivity

score vector s = (s1, ..., sd) corresponding to a specific category, we average the sensitivity
scores of all samples belonging to the same category and denote the result as s̄ = (s̄1, ..., s̄d).

Step 2: Dimensional Radius Contribution Quantification. In this step, we convert
the average feature sensitivity score s̄ into the contribution of the robustness of each dimen-
sion to the overall certified radius R of x, thereby proportionally allocating the overall cer-
tified radius to each dimension of the input vector. We first normalize the sensitivity score
vector s̄ to s̃ = (s̃1, ..., s̃d) = ( es̄1∑d

i=1 e
s̄i
, ..., es̄d∑d

i=1 e
s̄i
) whose components sum to 1. Then,

dimensional robust radius contribution weight wi is calculated according to Eq. (4-5).

Ri = wi ×R,wi =
Ri

R
=

1

ds̃i
, (4-5)

where d is the number of dimensions in the input feature vector x, 1
d
and R respectively de-
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Algorithm 4.2 Dimensional Radius Weight Calculation

Input: d-dimensional training samples (x, y) ∈ Dtrain, base C-class classifier F with the classification
function fθ, smoothed classifier Fsmooth.

Output: d-dim weight vector wc for each class c ∈ {1, .., C}
1: for j = 1 to len(Dtrain) do
2: load one training example xj , yj ;
3: for c = 1 to C do
4: nc ← 0

5: class c-specific dataset Dtrain,c ← ∅
6: if yj = c then
7: add (xj , yj) to Dtrain,c

8: nc ← nc + 1

9: sensitivity score sj = (sj
1, sj

2, ..., sj
d)← d(fc

θ (xj))

d(xj)

10: end if
11: end for
12: end for
13: radius weight vector set Dweight ← ∅
14: for c = 1 to C do
15: class c-specific average sensitivity score s̄c = (s̄c1, s̄c2, ..., ¯scd)←

∑nc
j=1 sj

nc

16: class c-specific unit sensitivity score s̃c ← ( e
¯

sc1∑d
k=1 e

¯
skc
, e

¯
sc2∑d

k=1 e
¯
skc
, ..., e

¯
scd∑d

k=1 e
¯
skc
)

17: class c-specific radius weight wc ← 1
ds̃i

18: add (wc, c) to Dweight

19: end for

note the normalized sensitivity of a single dimension and the overall certified radius when
assuming equal sensitivity across dimensions. Sensitivity and robustness proportions gener-
ally have an inverse relationship: higher sensitivity correlates with lower robustness.

4.3.4 Smoothing Distribution Alignment

To provide guarantee calculations for robust regions under various types of lp norm
measures, selecting the appropriate distribution whose sampling region aligns with the lp-
bounded robust region is essential. We explore the question of which probability distribution
yields the most random noises into the corresponding lp-measured certificate region. After
simulating the sampling areas of various probability distributions, the area formed by 10, 000
noise samples sampled from various distributions can be seen in Figure 4.4.

In the l2-bounded robust region, noised samples from a Gaussian distribution form areas
resembling a circle in 2D feature space, aligning with the l2 norm. In the l1-bounded region,
samples from a Laplacian distribution form diamond-shaped areas, indicating higher central
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(a) Gaussian N (µ, σ) (b) Laplacian L(µ, b) (c) Uniform U(a, b)

Figure 4.4 Smoothing Distribution Sampling Area.
10, 000 noised samples drawn from different smoothing distributions respectively. (a) Gaussian distribution aligns the

l2-bounded region. (b) Laplacian distribution aligns the l1-bounded region. (c) Uniform distribution aligns the
l∞-bounded region.

probability density and consistent with the l1 norm. In the l∞-bounded region, samples from
a Uniform distribution take on shapes akin to a square, catering to extreme variations and
matching the l∞ norm.

4.4 Experimental Setup

4.4.1 Testbed

We implemented the method using PyTorch 2.0.1 and SciPy V1.11.2 [140] . Each exper-
iment ran three times with varied random seeds on an NVIDIA GeForce 3090 GPU with
CUDA V11.7, and the averages were shown. The code for MARS has been open-sourced at
https://github.com/CertNID/MARS.

4.4.2 Model Architectures

We evaluated two SOTADNN-based network intrusion detectors (NIDs), CADE [6] and
ACID [5] , with different architectures and specialties to evaluate the certified defense perfor-
mance of MARS and other methods.

Contrastive Autoencoder for Drifting detection and Explanation (CADE). CADE
is a concept drift model trained on n − 1 classes and tested on n classes to detect unknown
samples. It employs an encoder-decoder model architecture with a monitoring system to
analyze the relationship between input data and training data. It is well-suited for scenarios
where the nature and attributes of observed samples may change compared to the knowledge
acquired during training.

ACID (Adaptive Clustering-based Intrusion Detection). ACID is amulti-classification
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NID model that integrates unsupervised and supervised learning. It identifies input from n

categories through the learning of n classes during the training phase. ACID’s strength lies
in its utilization of traffic features obtained via a clustering-based representation learning ap-
proach. This enables the expression of more comprehensive sample information compared
to manually defined traffic features, particularly for high-dimensional data.

4.4.3 Datasets

Following and extending the dataset settings in the leading work BARS [82] , we evalu-
ated the performance of MARS using two sub-datasets: CSE-CIC-IDS-2018-CADE andCSE-
CIC-IDS-2018-ACID (see Table 4.1), both derived from the CSE-CIC-IDS-2018 dataset [141] .
For the construction of each sub-dataset, we not only preprocessed the data in the original
CSE-CIC-IDS-2018 dataset to filter out duplicate samples, samples with invalid timestamps,
and samples with infinite values, but also digitized and normalized the raw feature values,
including one-hot encoded categorical features. This process mapped the network traffic vec-
tor, which includes both discrete and continuous features, into a space that can be measured
by the lp norm. For each dataset, the split ratio of training samples and test samples is 8 : 2.

Table 4.1 Information on network intrusion detection datasets used for evaluation.

Dataset
CSE-CIC-IDS-2018-CADE CSE-CIC-IDS-2018-ACID

DoS-Hulk-Drift Dataset Infiltration-Drift Dataset Diverse-Intrusions Dataset Similar-Intrusions Dataset
Class Number Class Number Class Number Class Number

Training

Benign 52996 Benign 52996 Benign 52996 Benign 52996
SSH-Bruteforce 9385 SSH-Bruteforce 9385 FTP-Bruteforce 12590 DoS-GoldenEye 26565
Infiltration 7390 DoS-Hulk 34789 DDoS-HOIC 53476 DoS-SlowHTTPTest 11191

- - - - Bot 22584 DDoS-LOIC-HTTP 46095

Test

Benign 13249 Benign 13249 Benign 13249 Benign 13249
SSH-Bruteforce 2346 SSH-Bruteforce 2346 FTP-Bruteforce 3148 DoS-GoldenEye 6641
Infiltration 1894 DoS-Hulk 8697 DDoS-HOIC 13369 DoS-SlowHTTPTest 2798
DoS-Hulk 43486 Infiltration 9327 Bot 5646 DDoS-LOIC-HTTP 11524

CSE-CIC-IDS-2018-CADE: For CADE, we used samples in the CSE-CIC-IDS-2018
dataset belonging to the Benign class and 3 malicious categories (including SSH-Bruteforce,
DoS-Hulk, and Infiltration). Specifically, we used one day’s traffic of Benign (02/14), SSH-
Bruteforce (02/14), DoS-Hulk (02/16), and Infiltration (03/01) to populate the dataset. Due
to the amount of samples in the original dataset, for each class, we collected 10% of the
samples in the original dataset. Since CADE is a NID that supports concept drift detection,
the test set must contain at least one unseen category in addition to the sample categories that
the CADEmodel has seen during the training phase. To this end, according to different offset
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categories, the CSE-CIC-IDS-2018-CADE dataset is further divided into the DoS-Hulk-Drift
dataset and the Infiltration-Drift dataset. In DoS-Hulk-Drift, DoS-Hulk appears only in the
test set. In Infiltration-Drift, Infiltration appears exclusively in the test set.

CSE-CIC-IDS-2018-ACID: For ACID, we used samples in the CSE-CIC-IDS-2018
dataset belonging to the Benign class and 6 malicious classes, including FTP-Bruteforce,
DDoS-HOIC, Bot, DoS-GoldenEye, DoS-SlowHTTPTest, and DDoS-attacks-LOIC-HTTP.
These data were divided into two datasets: Diverse-Intrusions dataset with diverse intrusion
types, and Similar-Intrusions dataset with similar intrusion types (See Table 4.1), used for
conventional and fine-grained multi-class detection evaluations, respectively. Specifically,
we used one day’s traffic of Benign (02/14), FTP-Bruteforce (02/14), Bot (03/02), and DDoS-
HOIC (02/21) to populate the Diverse-Intrusions dataset. For the FTP-Bruteforce class, we
collected 40% of the samples in the original dataset. For each other class, we collected 10%
of the samples in the original dataset. For the Similar-Intrusions dataset, we have Benign
(02/14), DoS-GoldenEye (02/15), DoS-SlowHTTPTest (02/16), and DDoS-attacks-LOIC-
HTTP (02/20). For the DoS-GoldenEye class, we used 80% of the samples in the original
dataset. For each other class, we collected 10% in the original dataset.

One-hot Encoding of Categorial Features. For the categorial feature dimensions, we
have one-hot encoded them. Destination Port features have been encoded to 0, 1, and 2,
with 0 for the low-frequency port (< 1000 ), 1 for medium (1000 ∼ 10000), and 2 for high
(> 10000). For the Protocol feature, we encoded '0' to 0, '6-TCP' to 1, and '17-UDP' to 2.
Note that 0, 1, and 2 means index where the 1 occupies rather than a number. For example, 0
for [1, 0, 0]. Furthermore, timestamp features were converted to UNIX seconds format before
normalization and MinMax scaling.

4.4.4 Attack Configuration

Parameters in Adversarial Attack. We use two types of white-box adversarial attacks:
Projected Gradient Descent (PGD) [14] and Elastic-Net Attack to DNN (EAD) [15] For l2-PGD,
l1-PGD, and l1-EAD attacks, the perturbation budget ϵ is set to 1.0, allowing for a maximum
adversarial perturbation that can significantly alter the input. Additionally, the per-step per-
turbation budget ϵs is configured to 0.75, which restricts the perturbation at each iteration to
ensure controlled modifications of the input. For the l∞-PGD attack, the parameters are ad-
justed to accommodate its unique characteristics: the perturbation budget ϵ is set to 0.2, and
the per-step perturbation budget ϵs is limited to 0.1. lp-PGD is typically most powerful under
the L∞ norm constraint, so the perturbation budget required to achieve evasion is smaller.
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In all cases, the maximum number of iterations, Niteration, is uniformly set to 20, providing a
consistent framework for evaluating the effectiveness of each attack method.

Parameters in Natural Corruption Perturbable features under two natural corruption
threats are shown in Figure 4.5.

8 23 36 49 76 839 12 21 43 57 63 66 68 70 74

Figure 4.5 Features perturbed under natural corruptions.

Latency. We used a Gaussian distribution with a standard deviation of 1 and a mean of
0 to add random noise to the time-related traffic features, such as the time between two flows,
time between two packets, time a flow was active before becoming idle, time a flow was idle
before becoming active, etc.

PacketLoss. We used a Gaussian distribution with a standard deviation of 1 and a mean
of 0 to add random noise to packet quantity-related features and partial length-related features
correlated with the packet number, such as the number of total packets, number of packets
transferred per second, number of packets bulk rate, number of packets in a sub-flow, etc.

4.4.5 Defense Configuration

To ensure a fair comparison, we selected three SOTA robustness certification methods
known for their good architecture-level scalability as certified defense baselines. These meth-
ods rely on randomized smoothing, allowing for applicability across various NID structures.
Table 4.2 illustrates their properties.

Vanilla Randomized Smoothing (VRS). VRS [79] is the first randomized smoothing-
based robustness certification technique designed for image classification. It uses random
Gaussian noise and the Monte Carlo sampling method to obtain the l2-measured radius only
through the zero-order information.

First Order-based Randomized Smoothing (FRS). Since zero order-based methods
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Table 4.2 Comparison of certified defense methods

Method Heterogeneity Universality
Robustness Guarantee Diversity Adversarial Attacks Natural Corruptions
l2 Radius l1 Radius l∞ Radius l2 Attack l1 Attack l∞ Attack Latency Loss

VRS [79]

FRS [81]

BARS [82]

MARS

so far still have some gaps between the actual robust radius and the available certified radius,
FRS [81] (2020) was proposed to provide certified robustness for image classifiers by using
the first-order gradient of the smoothed classifier, which further tightens the lp radius.

Boundary-Adaptive Randomized Smoothing (BARS). BARS [82] is the only existing
NID robustness certification framework, which is built on top of VRS. It focuses on zero-
order information and adapts to the network traffic features with dimension-wise optimized
smoothing distribution but only provides l2 robustness guarantees.

4.4.6 Evaluation Metrics

We evaluate certified robustness against any potential perturbated inputs, empirical ro-
bustness against specific adversarial inputs and corrupted inputs, and regular predictive per-
formance on clean inputs using various metrics.

Certified Robustness. We use Mean Certified Radius and Certified Accuracy to eval-
uate the certified robustness of the model.

Mean Certified Radius (MCR). The average certified radius is calculated on a per-class
basis, as shown in Eq. (4-6):

MCR =

∑N
i=1 Ri

N
, (4-6)

whereN represents the total number of test samples belonging to the same class, Ri denotes
the certified radius for each test sample. We count MCR based on all samples in the same
class to observe the certified robustness of the classifier across different categories. This
approach allows us to evaluate the model’s certified robustness against targeted adversarial
attacks on different classes. A larger value of MCR indicates a tighter lower bound for the
robust radius, indicating that the model can maintain its performance with a greater margin
of safety when faced with adversarial perturbations.

Certified Accuracy. Given a certified radius threshold Rgiven, the certified accuracy
measures the proportion of test samples that are correctly predicted by the certified defended
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classifier Fsmooth with a certified radius R greater than Rgiven, as shown in Eq. (4-7).

Certified Accuracy =
N(Fsmooth(x)=ytrue)&(R≥Rgiven)

NTotalCertTest

(4-7)

The numerator, N(Fsmooth(x)=ytrue)&(R≥Rgiven), counts only those correctly predicted samples
that also satisfy the condition R ≥ Rgiven. The denominator, NTotalCertTest, indicates the
total number of test samples for certification evaluation. A higher certified accuracy reflects
a greater number of samples passing the robustness certification under the specified threshold
Rgiven. By tracking certified accuracy, we can assess the effectiveness of a DNN model in
maintaining correct predictions while satisfying certified robustness.

Empirical Robustness. We use Robust Accuracy to assess the model’s empirical ro-
bustness against adversarial attacks and natural corruptions. For natural corruptions, we also
evaluate metrics such as Recall, Precision, F1-score, False Positive Rate (FPR), and False
Negative Rate (FNR) on the corrupted test data.

Robust Accuracy. Robust Accuracy reflects the proportion of perturbed test samples
(e.g., adversarial examples or corrupted examples) that the model predicts correctly in all
perturbed test samples, as expressed in Eq. (4-8):

Robust Accuracy =
N(Fsmooth(x∗)=ytrue)

NTotalPertTest

=
TP + TN

TP + TN + FP + FN
(4-8)

where, N(Fsmooth(x∗)=ytrue) denotes the number of perturbed samples correctly predicted, and
NTotalPertTest denotes the total number of perturbed test samples for evaluation. Specifically,
TP is True Positives (malicious samples correctly classified), TN is True Negatives (benign
samples correctly classified), FP is False Positives (benign samples incorrectly classified),
and FN is False Negatives (malicious samples incorrectly classified). We use Robust Ac-
curacy to evaluate the empirical robustness of NIDs on four specifical adversarial attacks
(l2-PGD, l∞-PGD, l1-PGD, l1-EAD) and two natural corruptions (PacketLoss and Latency).

When evaluating the robust accuracy on adversarial examples, Robust Accuracy calcu-
lated by Eq. (4-9) is equal to the Recall calculated by Eq. (4-10) because the adversarial test
set contains only adversarial malicious (AdvMal) traffic (described in Section 4.2.1), so that
TN and FP are always 0.

Robust Accuracy (on adversarial examples) =
N(Fsmooth(x∗)=ytrue)

NTotalAdvMalTest

(4-9)

Recall =
TP

TP + FN
(4-10)

When evaluating the robust accuracy on natural corruption examples, since the cor-
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rupted test set contains corrupted benign and corrupted malicious traffic (described in Sec-
tion 4.2.1), robust accuracy is calculated as the ratio of correctly predicted samples among
all test perturbated samples, as expressed in Eq. (4-8).

Precision. It represents the proportion of TP among all positive predictions, given
by Eq. (4-11):

Precision =
TP

TP + FP
. (4-11)

F1-score. It is the harmonic mean of Precision and Recall, balancing the two to provide
a single metric for performance when both FP and FN are important. It is calculated as Eq. (4-
12):

F1 = 2× Precision×Recall

Precision+Recall
. (4-12)

False Positive Rate (FPR). It is also known as False Alarm Rate, measures the pro-
portion of negative test samples (such as benign) that are incorrectly classified as positive
samples (such as malicious) in all negative test samples, calculated as Eq. (4-13):

FPR =
FP

FP + TN
. (4-13)

False Negative Rate (FNR). It quantifies the proportion of positive test samples that are
incorrectly classified as negative in all positive test samples, defined as Eq. (4-14):

FNR =
FN

FN + TP
. (4-14)

Regular Performance We use Clean Accuracy to evaluate the regular predictive per-
formance of the model on clean data without perturbation. We also evaluate metrics such as
Recall, Precision, F1-score, FPR, and FNR on the clean test data.

Clean Accuracy. It is the ratio of correctly predicted clean test samples among all clean
test samples, as defined in Eq. (4-15):

CleanAcc =
N(Fsmooth(x)=ytrue)

NTotalCleanTest

. (4-15)

4.5 Horizontal Experimental Results and Analysis

In this section, we compare the performance of MARS with state-of-the-art (SOTA) cer-
tified defenses based on randomized smoothing (RS) across several aspects. These include
comparisons of the tightness of l2 certified robustness guarantees (Section 4.5.1), l1 and l∞

robustness guarantees tightness (Section 4.5.2), empirical robustness against adversarial at-
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tacks (Section 4.5.3), empirical robustness against natural corruptions (Section 4.5.4), and
certified and empirical robustness in fine-grained intrusion detection (Section 4.5.5).

4.5.1 Comparison of l2 Robustness Guarantee with SOTA RS Methods

We first compare the tightness of the l2 robustness guarantees provided by MARS with
VRS [79] and FRS [81] for the image domain, and BARS [82] for the network traffic domain. For
a fair comparison, we used the same dataset and settings as BARS. We calculated the MCR
and certified accuracy (defined in Section 4.4.6) for each category on ACID and CADE.

Setup. To be comparable with VRS and FRS, which do not consider dimension-wise
radius, the object we compare is the overall certified radius R of the smoothed model. For
the smoothed classifier, nsmall and nlarge are set to 100 and 10, 000. The parameters for the
smoothed classifier are: nsmall =100, nlarge =10,000. The learning rate for optimizing the
noise shape is set to 0.01. The maximum number of training epochs is limited to 10. The
failure probability α for radius calculation is set to 0.001. To be consistent with the evaluation
setup in BARS, MCR and certified accuracy are measured by category for each test set.

Results. The results of MCR (see Figure 4.6) and certified accuracy (see Figure 4.7)
show that MARS always outperforms the SOTA randomized smoothing methods. Especially
on the CADE-Infiltration-Drift dataset and the CSE-CIC-IDS-2018-ACID dataset, MARS

shows significant advantages over BARSwhen bothVRS and FRS failed certification inmany
categories. Also, for the SSH-Bruteforce category in the CADE-DoS-Hulk-Drift dataset, we
observe that the certified radius obtained by all methods is always zero, which indicates that
CADE itself is very sensitive and vulnerable to the SSH-Bruteforce attack in the CADE-DoS-
Hulk-Drift dataset, leading to failure to certify.

Detailed MCR results are available in Table 4.3, which shows the certified robustness
performance measured by the mean certified radius in each category for two CADE models
and an ACIDmodel. A certified radius equal to 0 indicates that the detection model is vulner-
able to the specific attack category. Even if the clean sample is perturbated very weakly, that
is, the noise budget is very small, it is easy for the model to lose confidence in the prediction
results, leading to certification failure, that is, getting a radius equal to 0. As we see from
the table, for the CADE models trained with VRS or FRS on the CADE-DoS-Hulk-Drift
dataset, SSH-Bruteforce and Infiltration are attacks that are relatively difficult to detect. For
the CADE trained on the CADE-Infiltration-Drift dataset, benign is a vulnerable category.
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Figure 4.6 Comparison of l2 Mean Certified Radius (MCR).
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Figure 4.7 Comparison of certified accuracy of l2 robustness guarantee.

For the ACID, the detection of FTP-Bruteforce, DDoS-HOIC, and Bot attacks is unsta-
ble. Fortunately, BARS and MARS can not only enhance the certified robustness against those
attacks model is originally robust againt, but also increase the certified radius in these vul-
nerable classes, and the improvement brought by MARS has always been greater than BARS.
However, we observed that CADE trained based on the CADE-Infiltration-Drift dataset has
reached the consistent conclusion that it is difficult to pass certification in the SSH-Bruteforce
category with all certification methods. This is due to the inherent vulnerability of the CADE
model obtained under this training setting, because CADE trained on another dataset per-
forms normally on the same class.

Table 4.3 Comparison of l2 Mean Certified Radius (MCR)

Method Seed
CADE-DoS-Hulk-Drift Dataset CADE-Infiltration-Drift Dataset ACID-CIC-IDS-2018 Dataset

Benign SSH-Bruteforce Infiltration Benign SSH-Bruteforce DoS-Hulk Benign FTP-Bruteforce DDoS-HOIC Bot

VRS [79]

42 1.6260 0.0000 0.0000 0.0000 0.0049 1.4110 0.0012 0.0000 0.0000 0.0000
43 1.6219 0.0000 0.0000 0.0000 0.0049 1.4077 0.0012 0.0000 0.0000 0.0000
44 1.6356 0.0000 0.0000 0.0000 0.0048 1.4060 0.0011 0.0000 0.0000 0.0000

FRS [81]

42 1.8850 0.0000 0.0000 0.0000 0.0054 1.6350 1.2585 0.0000 0.0000 0.0000
43 1.8796 0.0000 0.0000 0.0000 0.0054 1.6315 1.2558 0.0000 0.0000 0.0000
44 1.8965 0.0000 0.0000 0.0000 0.0054 1.6283 1.2554 0.0000 0.0000 0.0000

BARS [82]

42 2.4391 0.0000 3.1658 2.0500 0.2448 1.6406 1.8636 1.5808 2.4802 2.4455
43 2.4204 0.0000 3.1658 2.0497 0.2456 1.6371 1.8636 1.5819 2.4803 2.4465
44 2.4407 0.0000 3.1658 2.0486 0.2446 1.6340 1.8590 1.5815 2.4799 2.4447

MARS
42 2.4361 0.0000 3.1658 2.0536 0.4738 1.6406 1.8964 1.6828 2.4812 2.5953
43 2.4404 0.0000 3.1688 2.0547 0.4755 1.6471 1.8958 1.6832 2.4806 2.6450
44 2.4407 0.0000 3.1660 2.0535 0.4741 1.6340 1.8918 1.6835 2.4816 2.6461

4.5.2 Comparison of lp Robustness Guarantee with SOTA RS Methods

To assess the tightness of lp robustness guarantees across different norms, we first com-
pare the sizes of l2, l1, and l∞ certified radii with the leading method FRS [81] , since neither
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VRS nor BARS supports l1 and l∞ robustness certification. FRS incorporates l2, l1, and l∞

guarantees but relies exclusively on standard Gaussian distribution for smoothing. For a fair
comparison, we compare MARS with FRS using Gaussian smoothing distribution across all
lp norms, without distribution alignment.

Results. The results of MCR (see Figure 4.8) show that MARS consistently provides
tighter lp robustness guarantees compared to FRS. Especially when FRS fails certification
on many classes (with radius 0) due to its nature of smoothing all traffic feature dimensions
indiscriminately, MARS still outputs non-trivial l2, l1 and l∞ radii. Furthermore, the results
of certified accuracy (see Figure 4.9) show that l2 and l1 radii are close, but the l∞ radius
remains the smallest, as l∞ is the most difficult to capture by the Gaussian distribution.

Detailed MCR results are available in Table 4.4. We can see that if there is a lack of
customized certification design for network traffic data, even the FRS that also uses first-order
information will have a hard time effectively certifying the robust radius of the attack samples
for the NIDs. Meanwhile, we also observed that compared with l2 and l1 certification, it is
more difficult to obtain a tight l∞ robustness guarantee, that is, a large l∞ certified radius.
This is reasonable because under the same budget ||δ||p < R, the l∞-measured certified
region will be larger in volume than l2 and l1, thus it is easier for samples to evade detection.

4.5.3 Comparison of Empirical Robustness against Different lp Adver-
sarial Attacks with SOTA RS Methods

Considering the diversity of adversary changes, unlike BARSwhich only tests against l∞
adversarial attacks, we use various lp norms to enrich the threat model. We employ Projected
Gradient Descent (PGD) [14] and Elastic-Net Attack to DNN (EAD) [15] as threat models of
white-box adversarial attacks to generate adversarial examples x∗ = x+ δ.

Setup. Following the BARS settings, we selected one of the malicious categories, Bot,
as a representative to test whether the ACID model with certified defense can correctly iden-
tify adversarial Bot samples, and calculated the robust accuracy and clean accuracy (defined
in Section 4.4.6). For l2-PGD, l1-PGD, and l1-EAD, perturbation budget ϵ that determines
the maximum adversarial perturbation is set to 1.0 and per-step perturbation budget ϵs that
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Figure 4.8 Comparison of lp Mean Certified Radius (MCR) under the same smoothing distribution.
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Figure 4.9 Comparison of lp certified accuracy under the same smoothing distribution.

Table 4.4 Comparison of lp Mean Certified Radius (MCR) under the same smoothing distribution.

Norm Method Seed
CADE-DoS-Hulk-Drift Dataset CADE-Infiltration-Drift Dataset ACID-CIC-IDS-2018 Dataset

Benign SSH-Bruteforce Infiltration Benign SSH-Bruteforce DoS-Hulk Benign FTP-Bruteforce DDoS-HOIC Bot

l2

FRS [81]

42 1.8850 0.0000 0.0000 0.0000 0.0054 1.6350 1.2585 0.0000 0.0000 0.0000
43 1.8796 0.0000 0.0000 0.0000 0.0054 1.6315 1.2558 0.0000 0.0000 0.0000
44 1.8965 0.0000 0.0000 0.0000 0.0054 1.6283 1.2554 0.0000 0.0000 0.0000

MARS

42 2.4361 0.0000 3.1658 2.0536 0.4738 1.6406 1.8964 1.6828 2.4812 2.5953
43 2.4404 0.0000 3.1688 2.0547 0.4755 1.6471 1.8958 1.6832 2.4806 2.6450
44 2.4407 0.0000 3.1660 2.0535 0.4741 1.6340 1.8918 1.6835 2.4816 2.6461

l1

FRS [81]

42 1.8850 0.0000 0.0000 0.0000 0.0054 1.6350 1.2585 0.0000 0.0000 0.0000
43 1.8796 0.0000 0.0000 0.0000 0.0054 1.6315 1.2558 0.0000 0.0000 0.0000
44 1.8965 0.0000 0.0000 0.0000 0.0054 1.6283 1.2554 0.0000 0.0000 0.0000

MARS

42 2.4391 0.0000 3.1658 2.0556 0.4950 1.6406 1.9028 1.6933 2.4812 2.4453
43 2.4204 0.0000 3.1658 2.0567 0.4968 1.6371 1.9028 1.6936 2.4806 2.4450
44 2.4407 0.0000 3.1658 2.0556 0.4953 1.6340 1.8990 1.6939 2.4816 2.4461

l∞

FRS [81]

42 0.2069 0.0000 0.0000 0.0000 0.0006 0.1795 0.0000 0.0000 0.0000 0.0000
43 0.2063 0.0000 0.0000 0.0000 0.0006 0.1791 0.0000 0.0000 0.0000 0.0000
44 0.2082 0.0000 0.0000 0.0000 0.0006 0.1787 0.0000 0.0000 0.0000 0.0000

MARS

42 0.2663 0.0000 0.3475 0.2299 0.0633 0.1801 0.2182 0.1920 0.2723 0.2684
43 0.2657 0.0000 0.3475 0.2300 0.0635 0.1797 0.2181 0.1920 0.2723 0.2684
44 0.2679 0.0000 0.3475 0.2299 0.0633 0.1794 0.2177 0.1920 0.2724 0.2685

determines the maximum allowed perturbation at each iteration is set to 0.75. For l∞-
PGD, ϵ is 0.2 and ϵs is 0.1. The maximum number of iterations Niteration is set to 20 for all
attacks. Reported averages are based on results from random seeds (42, 43, 44).

Results. Since we only measure the Robust Accuracy of the model against adversarial
malicious examples, robust accuracy here is equivalent to the Recall. The results of Robust
Accuracy on adversarial examples (see Table 4.5) show that compared to BARS, our de-
fense boosts the robust accuracy against adversarial attacks by 1.70% for l2-PGD, 7.17% for
l∞-PGD, and 10.11% for l1-EAD. Compared to the base NID without any certified defense
(noted as Vanilla), robust accuracy increases by 13.79% for l2-PGD, 33.94% for l∞-PGD,
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and 10.01% for l1-EAD. Notably, we also observe that the base ACID detector itself is al-
ready very robust to l1-PGD attacks, and both BARS and MARS preserve this robustness.
Thus, we tested the more powerful l1-EAD, essentially a linear mixture of l1 and l2 penalty
functions. Neither Vanilla nor BARS can resist l1-EAD, and only MARS enhances model ro-
bustness against it. Also, it can be seen from the table that both BARS and MARS well retain
the detection accuracy of the vanilla ACID model on clean Bot samples, reaching 100%.

Table 4.5 Comparison of empirical robustness of ACID against different adversarial attacks

Metric Clean Accuracy Robust Accuracy/Recall on Adversarial Examples

Method Seed Clean l2-PGD l∞-PGD l1-PGD l1-EAD

Vanilla

42 1.0000 0.8395 0.5501 1.0000 0.0032
43 1.0000 0.8395 0.5502 1.0000 0.0016
44 1.0000 0.8395 0.5502 1.0000 0.0032

mean±std 1.0000±0.0000 0.8395±0.0000 0.5502±0.0001 1.0000±0.0000 0.0027±0.0009

BARS [82]

42 1.0000 0.9601 0.8154 1.0000 0.0016
43 1.0000 0.9601 0.8190 1.0000 0.0017
44 1.0000 0.9610 0.8190 1.0000 0.0016

mean±std 1.0000±0.0000 0.9604±0.0005 0.8178±0.0020 1.0000±0.0000 0.0016±0.0001

MARS

42 1.0000 0.9779 0.8925 1.0000 0.1031
43 1.0000 0.9784 0.8863 1.0000 0.1021
44 1.0000 0.9759 0.8898 1.0000 0.1031

mean±std 1.0000±0.0000 0.9774±0.0013 0.8895±0.0031 1.0000±0.0000 0.1028±0.0006

4.5.4 Comparison of Empirical Robustness against Different Natural
Corruptions with SOTA RS Methods

Besides adversarial examples, natural corruptions from changes in the cyber environ-
ment can also lead to model misclassification. We generate naturally corrupted samples from
clean benign and malicious inputs using Latency and PacketLoss, as defined in Section 4.2.1
and implemented in Section 4.4.4. Since natural corruption noise generally does not follow
specific patterns, using an empirical distribution would make more sense. In our study, dis-
tribution shifts in the feature dimensions related to packet arrival time and packet number are
simulated using random noise following a Gaussian distribution with mean 0. We adjust the
standard deviation σ in {0.5, 1.0, 1.5} to mimic the different corruption strengths.

Results. The results of Robust Accuracy on corrupted samples (see Figure 4.10) show
that we can see thatMARS consistently outperformsBARS andVanillia across various corrup-
tion intensities and certified classes. Also, under the same corruption strength, both vanilla
and certified defended models show higher resilience to PacketLoss than to Latency for be-
nign and malicious traffic. This suggests that ACID is more sensitive to perturbations in
time-related features and more robust in quantity-related features.
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Figure 4.10 Comparison of empirical robustness of ACID against varied natural corruptions.

Table 4.6 Comparison of empirical robustness of ACID against varied natural corruptions

Class Benign Bot

Metric CleanAcc Robust Accuracy CleanAcc Robust Accuracy

Method Seed Clean
Latency (σ) PacketLoss (σ)

Clean
Latency (σ) PacketLoss (σ)

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

Vanilla

42 1.0000 0.8038 0.5643 0.4409 0.8902 0.6377 0.4760 1.0000 0.9152 0.6109 0.4644 0.9541 0.6784 0.5158
43 1.0000 0.8112 0.5643 0.4391 0.8897 0.6377 0.4656 1.0000 0.9198 0.6108 0.4710 0.9616 0.6782 0.5019
44 1.0000 0.8153 0.5643 0.4409 0.8881 0.6377 0.4718 1.0000 0.9137 0.6114 0.4589 0.9548 0.6790 0.5151

BARS [82]

42 1.0000 0.7939 0.5608 0.4123 0.8827 0.6202 0.4248 1.0000 0.9306 0.6178 0.4201 0.9722 0.7132 0.4793
43 1.0000 0.7956 0.5554 0.4019 0.8866 0.6155 0.4257 1.0000 0.9323 0.6194 0.4194 0.9731 0.7212 0.4704
44 1.0000 0.7986 0.5517 0.4064 0.8806 0.6108 0.4267 1.0000 0.9362 0.6278 0.4118 0.9674 0.7164 0.4702

MARS

42 1.0000 0.8564 0.6354 0.5066 0.9354 0.7139 0.5435 1.0000 0.9495 0.6993 0.5448 0.9803 0.8018 0.5802
43 1.0000 0.8564 0.6414 0.5042 0.9337 0.7050 0.5525 1.0000 0.9486 0.7095 0.5409 0.9814 0.8118 0.6130
44 1.0000 0.8569 0.6370 0.5125 0.9328 0.7079 0.5549 1.0000 0.9470 0.7096 0.5400 0.9796 0.8039 0.6080

The results in Table 4.6 show the detailed Robust Accuracy of the ACID against two
natural corruptions: Latency and PacketLoss. It can be seen from the consistent results that
MARS always has the highest robust accuracy for increasing natural disturbances. Compared
with the enhanced robustness from MARS, BARS weakens the detector’s ability to identify
natural corruptions.
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4.5.5 Comparison of Adversarial Robustness in Fine-grained Intru-
sion Detection with SOTA RS Methods

Even with similar intrusion purposes, attackers often employ varied techniques and
tools. Considering the differences among attackers, we assessed the fine-grained detection
performance of MARS on datasets containing similar network intrusion types.

Setup. This evaluation includes various DoS-related attacks to extend performance as-
sessment in fine-grained NID scenarios. Using the Similar-Intrusions Dataset involving be-
nign (defined in Table 4.1), we trained a four-class ACID model with 99% accuracy, 100%
precision, and an F1-score of 1 on clean test set in 312 seconds. Various lp certified radii and
robust accuracy were tested in fine-grained intrusion detection.

Figure 4.11 Comparison of lp Mean Certified Radius (MCR) in fine-grained intrusion detection.

Results. We compared l2, l1, and l∞ radius with other randomized smoothing methods.
Analogous to the previous cases, MARS achieved the largest certified radii in all three similar
intrusions chosen (DoS-GoldenEye, DoS-SlowHTTPTest, and DDoS-attacks-LOIC-HTTP).
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Table 4.7 Comparison of l2 MCR and Average Certification Time (ACT) (per sample/sec) in fine-grained
detection of similar intrusions.

Method Benign DoS-GoldenEye DoS-SlowHTTPTest DDoS-LOIC-HTTP

VRS [79] 0.1950 (0.0028) 0.0001 (0.0039) 0.0000 (0.0053) 0.0000 (0.0033)
FRS [81] 1.2077 (0.0238) 0.0024 (0.0309) 0.0014 (0.0459) 0.0000 (0.0269)
BARS [82] 1.9036 (0.0029) 2.1928 (0.0040) 2.2280 (0.0051) 2.2034 (0.0033)
MARS 1.9260 (0.0253) 2.2305 (0.0331) 2.2289 (0.0361) 2.2070 (0.0279)

Table 4.8 Comparison of lp MCR and Average Certification Time (ACT) (per sample/sec) in fine-grained
detection of similar intrusions under the same smoothing distribution.

Norm Method Benign DoS-GoldenEye DoS-SlowHTTPTest DDoS-LOIC-HTTP

l2
FRS [81] 1.2077 (0.0238) 0.0024 (0.0309) 0.0014 (0.0459) 0.0000 (0.0269)
MARS 1.9260 (0.0253) 2.2305 (0.0331) 2.2289 (0.0361) 2.2070 (0.0279)

l1
FRS [81] 1.2077 (0.0236) 0.0000 (0.0311) 0.0000 (0.0365) 0.0000 (0.0272)
MARS 1.9317 (0.0256) 2.2373 (0.0334) 2.2289 (0.0378) 2.2037 (0.0283)

l∞
FRS [81] 0.0000 (0.0240) 0.0000 (0.0321) 0.0000 (0.0377) 0.0000 (0.0279)
MARS 0.2196 (0.0263) 0.2482 (0.0336) 0.2475 (0.0383) 0.2460 (0.0293)

The results of MCR (see Figure 4.11, Table 4.7,and Table 4.8) show that MARS achieves the
largest MCR across all lp norms: l2 radius increased by 9 × 10-4 to 3.77 × 10-2 compared
to BARS, l1 by 7.24 × 10-1 to 2.2373 and l∞ by 2.20 × 10-1 to 2.48 × 10-1 compared to
FRS. The time for MARS to certify a single sample is comparable to that of FRS, which is
around 0.02 to 0.03 seconds. Although it is higher than BARS and VRS based on zeroth-
order information, it is still an efficient millisecond-level overhead. MARS certified 6.6K
GoldenEye, 2.8K SlowHTTPTest, and 11.5K LOICHTTP samples in 219.82, 100.99, and
321.19 sec, respectively. Also, we noticed that using Laplace or Uniform may not certainly
lead to better results, this could be due to the nature of classifiers and dataset. Different
distributions may work better with different datasets.

Furthermore, we observe that MARS outperforms BARS in defending the vanilla classi-
fier against Latency and PacketLoss corruption, improved accuracy by 6.12% under Latency
and PacketLoss corruptions (See Figure 4.12 and Table 4.9). False Positive Rate (FPR) on
corrupted Benign samples decreased by 4.27%, and False Negative Rate (FNR) on corrupted
GoldenEye decreased by 6.35%. With MARS defense, the classifier achieves higher precision
with corruption on both Latency and PacketLoss. This improvement is consistent across
classes, as seen in Benign and DoS-GoldenEye examples.
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Table 4.9 Comparison of empirical robustness of ACID against natural corruptions in fine-grained intru-
sion detection.

Metric Test Class Method Clean Latency PacketLoss

FPR Benign
Vanilla 0.0001 0.1991 0.1798
BARS [82] 0.0001 0.1425 0.1362
MARS 0.0001 0.0969 0.0965

FNR DoS-GoldenEye
Vanilla 0.0002 0.5884 0.6060
BARS [82] 0.0704 0.3594 0.4125
MARS 0.0136 0.2486 0.3964

Accuracy All
Vanilla 0.9900 0.5603 0.5893
BARS [82] 0.7580 0.5595 0.5764
MARS 0.8092 0.6206 0.6378

Precision All
Vanilla 1.0000 0.8474 0.8576
BARS [82] 0.9999 0.8919 0.8917
MARS 0.9999 0.9119 0.9147

Figure 4.12 Comparison of empirical robustness of ACID against natural corruptions in fine-grained
detection of similar intrusions.

4.6 Vertical Experimental Results and Analysis

In this section, we first present the analysis of dimension-wise certified robustness (Sec-
tion 4.6.1). Then, we demonstrate the tightness of l1 and l∞ certified robustness guarantees
with different smoothing distributions (Section 4.6.2). Later, we presented the time cost of
the proposed method (Section 4.6.3).

4.6.1 Evaluation of Dimension-wise Certified Robustness

The certified radius presented in the previous sections is the overall radius, which is de-
rived from a weighted average of dimension-wise certified radii. Analyzing the dimensional
radius Ri can help intrusion detection participants identify sensitive (important) and insen-
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sitive (robust) features, informing model feature-specific robustness. We evaluated MARS-
defend ACID’s l2 Ri on the GoldenEye class.

Results. A smaller radius indicates greater sensitivity and importance to the NID, as
perturbations to such features are more likely to alter the model’s predictions. The results of
dimensional MCR on all features shown in Figure 4.13) and the top-5 and bottom-5 radius
rankings listed in Table 4.10 reflect the ACID model’s sensitivity to InterArrivalTime (IAT)-
related features and its relative robustness to quantity-related features in the DoS-GoldenEye
attack, which is consistent with previous findings of increased FNR for ACID on Latency-
corrupted DoS-GoldenEye samples in Section 4.5.5.

Figure 4.13 l2 Dimensional MCR of ACID on DoS-GoldenEye.

4.6.2 Evaluation of lp Robustness under Different Smoothing Distri-
butions

VRS, FRS, and BARS all use the Gaussian distribution as the smoothing distribu-
tion; only MARS considers distribution alignment. We evaluate the certified radii under the
smoothing distribution alignment setting. We sequentially used Gaussian, Laplacian, and
Uniform distributions as smoothing distributions for l2, l1, and l∞ guarantees calculation.

Setup. The Gaussian distribution N (µ, σ) and the Laplacian distribution L(µ, b) have
the same mean 0 and standard deviation 1, lower bound a and upper bound b of the Uni-
form distribution U(a, b) are −

√
3 and

√
3 respectively. For l2 robustness guarantees shown

in Section 4.5.1, Gaussian is the default distribution type under our settings. Thus, we only
show the tightness of l1 and l∞ robustness guarantees obtained through MARS under different
smoothing distribution settings here.
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Table 4.10 Sensitive and robust features on DoS-GoldenEye

No Radius FeatureName Description

24 0.0426 Flow_IAT_Std Standard deviation time two flows.

20 0.0433 Bwd_Packet_Length_Std
Standard deviation size of packet
in backward direction.

79 0.0488 Active_Std
Standard deviation time a flow was
active before becoming idle.

72 0.0569 Init_Win_bytes_forward
Number of bytes sent in initial
window in the forward direction.

78 0.0576 Active_Max
Maximum time a flow was active
before becoming idle.

8 10.0741 Flow_Duration Flow duration.

39 10.9644 Fwd_URG_Flag
Number of times URG flag was
set in packets travelling in the
forward direction (0 for UDP).

52 11.2367 RST_Flag_Count Number of packets with RST.

38 11.3300 Bwd_PSH_Flag
Number of times PSH flag was
set in packets travelling in the
backward direction (0 for UDP).

13 11.4358 Fwd_Packet_Length_Min
Minimum size of packet
in forward direction.

All 2.2305 MCR Mean certified radius per class.

Results. Results of l1 MCR (see Figure 4.14) show that Gaussian and Laplacian dis-
tributions each excel in different classes, indicating that simply using a single distribution
may miss a tighter certified radius, leading to a necessity of analyzing different distributions.
Results of l∞ MCR can be seen in Table 4.11, which enlightens us that for the l1 robustness
guarantee, the Gaussian distribution consistently used by the compared methods is not neces-
sarily the best in various categories. Although the smoothing area of the uniform distribution
is closer to l∞, as it has upper and lower bounds, the choice of distribution parameters greatly
limits the addition of noise. However, for the l∞ certified radius, Gaussian distribution in-
deed has advantages. Although the l∞-measured certified area best matches the Uniform
distribution in shape, the smoothing region that the Uniform Distribution can cover is strictly
controlled by the upper and lower bound parameters, and sharp truncation areas will appear.
Therefore, the certification performance will be largely affected by the hyperparameters.

4.6.3 Evaluation of Time Cost

We calculated the Average Certification Time (ACT) per sample for detection models
(CADE and ACID) across various network traffic categories.

Results. The results of ACT (see Table 4.12) show that, compared to BARS, MARS
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Figure 4.14 l1 Mean Certified Radius (MCR) under different smoothing distributions

Table 4.11 lp Mean Certified Radius (MCR) under different smoothing distributions

Norm Distribution Seed
CADE-DoS-Hulk-Drift Dataset CADE-Infiltration-Drift Dataset ACID-CIC-IDS-2018 Dataset

Benign SSH-Bruteforce Infiltration Benign SSH-Bruteforce DoS-Hulk Benign FTP-Bruteforce DDoS-HOIC Bot

l1

Gaussian

42 2.4391 0.0000 3.1658 2.0556 0.4950 1.6406 1.9028 1.6933 2.4812 2.4453
43 2.4204 0.0000 3.1658 2.0567 0.4968 1.6371 1.9028 1.6936 2.4806 2.4450
44 2.4407 0.0000 3.1658 2.0556 0.4953 1.6340 1.8990 1.6939 2.4816 2.4461

Laplacian

42 2.8599 0.0000 3.4763 1.8303 0.0110 3.3576 1.4865 1.9654 1.9812 2.1438
43 2.8801 0.0000 3.4762 1.8297 0.0110 3.3504 1.5023 1.9665 1.9825 2.1452
44 2.8600 0.0000 3.4762 1.8273 0.0110 3.3439 1.4950 1.9692 1.9814 2.1440

l∞

Gaussian

42 0.2663 0.0000 0.3475 0.2299 0.0633 0.1801 0.2182 0.1920 0.2723 0.2684
43 0.2657 0.0000 0.3475 0.2300 0.0635 0.1797 0.2181 0.1920 0.2723 0.2684
44 0.2679 0.0000 0.3475 0.2299 0.0633 0.1794 0.2177 0.1920 0.2724 0.2685

Uniform

42 0.1449 0.0000 0.1897 0.0211 0.0003 0.0984 0.1581 0.1605 0.1404 0.1214
43 0.1452 0.0000 0.1897 0.0198 0.0003 0.0982 0.1581 0.1605 0.1404 0.1214
44 0.1464 0.0000 0.1898 0.0192 0.0003 0.0980 0.1580 0.1605 0.1404 0.1215

achieves the highest MCR in all competitions but increases ACT per sample by 21.1 mil-
liseconds (ms) on average. Despite this minor increase, the certification time cost of MARS

remains reasonable: ACT of CADE ranges from 8.0 to 14.6 ms, and ACT of ACID from 24.4
to 36.1 ms. ACT per class set was also assessed. MARS-defend CADE requires about 28 sec-
onds (sec) to certify 2K Infiltration or SSH-Bruteforce samples and approximately 125 sec
for 13K benign or 10K DoS-Hulk samples. This trade-off between slightly longer processing
times and enhanced reliability is favorable in security-critical NID applications.
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Table 4.12 Comparison of l2 certification time overhead of certified defense methods.

ACT (Seconds)
/sample

CADE ACID

Benign
SSH-

Bruteforce
Infiltration

DoS-
Hulk

Benign
FTP-

Bruteforce
DDoS-
HOIC

Bot
DoS-

GoldenEye
DoS-

SlowHTTPTest
DDoS-

LOIC-HTTP

VRS [79] 0.0008 0.0015 0.0017 0.0012 0.0028 0.0045 0.0028 0.0040 0.0039 0.0053 0.0033
FRS [81] 0.0089 0.0125 0.0122 0.0134 0.0238 0.0323 0.0235 0.0565 0.0309 0.0459 0.0269
BARS [82] 0.0004 0.0011 0.0013 0.0007 0.0029 0.0046 0.0029 0.0041 0.0040 0.0051 0.0033
MARS 0.0080 0.0131 0.0131 0.0146 0.0253 0.0346 0.0244 0.0327 0.0331 0.0361 0.0279

4.7 Summary

In this chapter, we studied the certification of adversarial robustness of DNNs and intro-
duced MARS, a framework to certify the adversarial robustness of the model with heteroge-
neous input features, such as network traffic data. Experiments demonstrate that MARS has
field-leading performance in terms of certified adversarial robustness evaluated by certified
radius and certified accuracy, as well as empirical adversarial robustness evaluated by robust
accuracy, false alarm rate, etc. (i) Our innovative use of first-order information offers tighter
bounds (12.23% average increase in MCR) and higher certified accuracy across all evaluated
classifiers compared to the leading BARS. (ii) Our certified defense not only boosts detection
accuracy on adversarial attacks (by 7.17% for l∞-PGD and 10.11% for l1-EAD compared to
BARS) but also exhibits better detection accuracy on natural corruptions (16.65% higher on
Latency and 18.23% higher on PacketLoss) , which is a notable achievement as smoothed
classifiers often exhibit reduced robustness to natural corruption. (iii) The ability to support
diverse lp certifications enhances our flexibility. In future work, we plan to investigate au-
tomatic distribution detection for unknown adversarial attacks and design non-lp robustness
certification against structural perturbations.
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Chapter V Adversarial Robustness Transfer with Contrastive
Adversarial Representation Distillation

Adversarially robust deep neural networks (DNNs) are crucial for creating security-
sensitive applications that are robust against adversarial attacks (a.k.a evasion attacks) using
adversarial examples, such as network intrusion detection systems. However, training accu-
rate and robust detection models from scratch typically demands extensive labeled data and
costly adversarial training. Existing transfer learning (TL) approaches help to mitigate this
issue, but most prioritize the prediction accuracy on clean data and ignore the robustness
against adversarial examples. Our empirical studies reveal that conventional TL techniques
generally yield accurate but not robust models, while the few existing adversarial TL works
that consider robustness are less effective and usually degrade accuracy. In this chapter, we
study the transfer technique for adversarial robustness of DNNs and propose a robustness-
preserving transfer learning framework, Contrastive Adversarial Representation Distillation
(CARD), to produce a target model for a given domain with limited data from a robust source
model adversarially trained in another domain.

CARD tackles two issues: scarcity of target-domain training data and robustness of the
target model against adversarial attacks. It has three main characteristics: (i) Adaptive di-
mension alignment — it adaptively aligns the input feature dimensions in the source domain
and the target domain and aligns the hidden representation dimensions of the target model
and the source model, thereby flexibly supporting transfer learning across data domains with
different feature dimensions and across deep neural networks with different structures. (ii)
Contrastive hidden representation distillation— it guides the target model in convergent with
the target-domain distribution with only a few samples by contrastively learning the latent
domain-invariant information in the source model representation space. (iii) Dual-view ro-
bustness capture — it strengthens the attention on domain-invariant robustness by using two
positive views in contrastive learning, including the adversarial manipulation view and the
natural corruption view. Finally, we show experimental results on various network intrusion
detectors and datasets, demonstrating that the proposed method enhances the transferability
of adversarial robustness across data domains and model structures. It achieves leading ad-
versarial robustness and regular predictive performance for lightweight models with limited
training data compared to SOTA adversarial fine-tuning and distillation methods.
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5.1 Overview

Deep learning (DL) techniques are increasingly attractive for developing network intru-
sion detection (NID) systems [2-3] . This is due to the exceptional capability of neural models to
discover hidden representations in large amounts of data and enhance classification accuracy,
as evidenced in fields such as computer vision [1] , speech recognition [142] , and networking [4] .
In this work, we focus on deep neural network (DNN)-based network intrusion detection
models because of their superior capability to process high-dimensional features [8] , efficient
scalability with large datasets [143] , and flexible adaptability to changing network threats [144] .

Learning a well-performing network traffic classifier from scratch can be challeng-
ing [145] . Complex attack patterns and privacy concerns in accessing real traffic make col-
lecting and labeling sufficient traffic samples difficult, while the evolving nature of network
intrusions requires the model to adapt quickly to new traffic data distributions with limited
training samples. Also, new NID application domains, like the Internet of Things (IoT) and
mobile edge computing systems, often require lightweight models [146-147] , which may sac-
rifice the representation learning ability of neural models [148] . Moreover, the robustness of
network traffic classifiers to adversarial attacks using adversarial examples (AEs) [19,21-22] ,
where malicious parties manipulate inputs to cause misclassification, is crucial. These mod-
els should also be resilient to natural noise from changes in the network environment.

A category of approaches for addressing the problem of data scarcity is based on trans-
fer learning (TL) [149-150] . TL leverages a model trained in a given domain, referred to as the
source domain, to train a model in a different but related domain, referred to as the target do-
main, in which very few labeled data are available. Previous work on TL for network traffic
classifiers has shown that knowledge transfer across related domains not only enhances the
adaptability of the models to changing network threats [151-152] , but also makes target-domain
lightweight models suitable for deployment on devices with limited computing and storage
resources [153] , [154] . However, such TL approaches do not address the pressing problem of
robustness against adversarial attacks and specifically do not address the following crucial
problem: Let fS be a source NID model, which has been trained to be robust against adver-
sarial attacks, and let fT be a target NID model derived from fS using TL, does the property
of robustness against adversarial attacks automatically transfer to fT? Especially, our as-
sumed threat model is adaptive adversarial attackers, meaning the target model’s robustness
is evaluated on AEs adaptively crafted by the adversary toward the target model.

Robustness-preserving TL ensures that the network traffic classifier trained via TL from
a robust source model is accurate and robust without requiring any additional training for ro-
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bustness. Furthermore, this concept is also pivotal in the broader area of foundation models
(FMs) [155] , which are large models trained on massive datasets. Rather than creating mod-
els from scratch, one can use an FM model as a starting point to generate models special-
ized/adapted for different tasks, model architectures, and data domains. In the context of
FMs, TL methods that enable derived models to inherit the robustness of the source model
are crucial for many application areas. Especially in NID, which is characterized by frequent
changes in traffic data distribution caused by evolving network threats, robustness-preserving
TL is critical. It would yield accurate target models with respect to (w.r.t.) both benign and
malicious traffic while being able to withstand adversarial attacks and traffic changes.

In this chapter, we demonstrate that conventional TL methods, such as standard finetun-
ing and knowledge distillation, fail to transfer robustness to the target NID model. However,
it is possible to design a TL approach that preserves the adversarial robustness of the source
NID model. We introduce Contrastive Adversarial Representation Distillation (CARD), a
novel TL framework that utilizes a robust source model trained in a related domain to gen-
erate an accurate and robust model for the target domain. It addresses two issues simulta-
neously: the scarcity of target-domain data and the robustness of the target model. CARD

is tailored for DNN-based network traffic classifiers and is designed to adapt to diverse TL
scenarios (see Figure 5.1), including cases where the source and target models differ only
in their data domains, differ only in their architectures, or differ in both data domains and
architectures.

Our design of CARD is built on three key technical elements: 1⃝ To support TL between
domains with different input feature dimensions and TL between DNNmodels with different
structures, we design a dual adaptive dimension alignment mechanism. Such a mechanism
uses three optimized embedding networks to not only align the input feature dimensions of the
target domain with the source domain but also align the hidden representation dimensions of
the target model and the source model— thereby obtaining embedded target-domain samples
that can be fed to the input layer of the source model and embedded hidden representations
that can be used for similarity calculations between different models. 2⃝ To learn the real
data distribution from a small number of target-domain training samples, we use Contrastive
Representation Distillation (CRD) [156] to extract domain-invariant latent features learned by
the source model in the source domain with sufficient training data — thereby guiding the
target model to converge to the target data domain with limited labeled training data after
combining supervision of ground-truth labels. 3⃝ To fully capture robustness-relevant infor-
mation from the source model, we design two robustness-aware contrastive views, namely
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Source-domain Training Set Predicted LabelRobust Source Model

Regular Malicious

Adversarial Malicious

Regular Benign

Test Sample

Target-domain Training Set Predicted LabelRobust Target Model

Regular Malicious

Adversarial Malicious

Regular Benign

Test Sample

Data Domain Changed
• Data distribution
• Input feature dimension

Model Architecture Changed
• Neural network depth, width
• Number of categories

Robustness Preserved 
• Adversarial robustness
• Regular Performance

Figure 5.1 Transfer learning scenarios where CARD can be applied to.
The target task and the source task differ in data domains, model architectures, or both.

the adversarial manipulation view and the natural corruption view, to force the target-domain
model clustering these two types of samples with the anchor sample in the embedding space
and separating them from negative samples — thereby generating a target-domain model
that is robust to adversarial perturbations and natural corruptions after combining adversarial
distillation and adversarial training.

We conduct extensive evaluations of CARD on multiple TL scenarios: cross-domain TL
(only data domain changes), cross-model TL (only model architecture changes), and more
challenging TL where both the data domain and model change. We also compare CARD with
baseline TL methods such as NID-specific standard fine-tuning [150] and knowledge distilla-
tion [153] , which do not consider robustness, as well as state-of-the-art (SOTA) image-specific
robustness-preserving TLmethods, including adversarial fine-tuning (FRFE [85] , TWINS [88] )
and adversarial distillation (VAD [91] , AAD [97] ) in binary and multi-classification tasks.

In this chapter, we make the following contributions:

• We propose the first robustness-preserving TL framework for NID, CARD, to learn
a robust target-domain network traffic classifier without requiring large amounts of
labeled training samples by contrastively distilling a robust source model. Owing to
the dual adaptive dimension alignment mechanism we design, this is the first solution
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that can flexibly adapt to a variety of TL scenarios.

• We introduce the first notion of dula robustness-aware positive views, including the
adversarial manipulation view and the natural corruption view, in contrastive repre-
sentation distillation to capture the robust domain-invariant information from the rep-
resentation space of the source model.

• We extensively evaluate the robustness and generalization of the target model, repeat-
ing each experiment with three random seeds. Results show that CARD achieves an
average 13% improvement in robust accuracy on adversarial samples and an 11% im-
provement on corrupted samples, with a 6% higher clean accuracy on regular samples
compared to SOTA adversarial fine-tuning and distillation methods.

5.2 Problem Formulation

5.2.1 Threat Model

We focus on two robustness threats faced by DNNs: (i) adversarial attacks — deliber-
ately launched by attackers using adversarial examples (AEs), and (ii) natural corruptions —
unintentionally caused distribution shifts by changes in the network environment.

Adversarial Attacks. We assume that the adversarial attacker is adaptive, meaning that
the robustness of the target model is assessed on AEs adaptively crafted by the adversary
against the target model rather than the source model. Additionally, we consider white-box
adversarial attacks. The adversary creates strong AEs based on complete knowledge of the
victim network traffic classifier. By assuming that the attacker possesses full knowledge of
the model, we aim to simulate a threat scenario where the adversary has maximum visibility
into the model internals. This enables the evaluation of the robustness of the model against
sophisticated attacks, leveraging knowledge of the model’s inner workings while also reveal-
ing potential vulnerabilities of the target model.

Natural Corruptions. We also consider the robustness of the target model to distribu-
tion shifts arising from natural variations in datasets. Natural corruptions result from uncon-
trollable environmental factors, such as lighting changes in images or recording device al-
terations in speech. Unlike adversarial attacks, these corruptions are typically unintentional.
Specifically for NID, we focus on the distribution shift caused by random noise added to
time-related, quantity-related, and length-related traffic features. By assuming noise back-
ground in temporal and spatial characteristics, we aim to mimic a scenario where natural
corruptions arise from network congestion or electromagnetic interference.
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With these considerations, the robustness of network traffic classifiers against adversar-
ial and natural perturbations on the input can be empirically demonstrated, ensuring effective
operation amid unexpected network disturbances.

5.2.2 Research Goal

Our goal is to design a robustness-preserving transfer learning (TL) technique that, start-
ing from a robust source model fS and a target-domain training setDT

train with a small num-
ber of labeled samples, ensures the robustness and accuracy of the target model fT for dif-
ferent TL tasks shown Figure 5.2. To achieve this, we need to address three key issues.

TL across Data Domain

v In same feature space

v In different feature space

TL across Model Structure

Ø With similar block

Ø With different block

TL across Data Domain
& Model Structure

v In same feature space

v In different feature space

Ø With similar block

Ø With different block

Ø With similar block

Ø With different block

Source Data Domain 
& Model Structure

- Different Input dimension
- Different data distribution
- Different output category

- Same input dimension
- Same data distribution
- Similar model blocks
- Different depth/width

- Same input dimension
- Same data distribution
- Different model block
- Different depth/width

- Same input dimension
- Similar data distribution
- Different output category

Figure 5.2 Differences in datasets and models between the target domain and the source domain in the
transfer learning tasks targeted by CARD.

Problem 1. Use TL to learn an accurate and robustness-preserving target model when
the source and target tasks differ in data domains w.r.t data distribution, number of features,
values of some features, or number of categories. For fine-tuning TL, the target and the
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source model may share the model architecture but have differences in the data domains.
With respect to NID, because concept drift often occurs in network environments, even when
the number and meaning of the feature dimensions of network traffic do not change, that is,
the same input feature space, the data distribution can change over time, thus resulting in a
new target data domain different from the source data domain. Furthermore, since the target-
domain data may involve different network protocols or services than the source domain, and
the tools for processing network traffic features may also be different, it is common that the
feature dimensions and meanings of the target-domain data may be different from the ones
of source-domain data, that is, different input feature spaces, resulting in greater differences
between the source-domain data and the target-domain data.

Problem 2. Use TL to learn an accurate and robustness-preserving target model when
the source and target tasks differ in model structures w.r.t depth, width, and layer structure.
In some scenarios, the source and target model are applied to the same data domain; how-
ever, the goal is to obtain a compressed target model with a smaller number of parameters.
In several application domains, NID models run in resource-constrained environments, such
as embedded devices, edge computing nodes, or mobile devices, so the actual target-domain
models need to have small model sizes and fewer parameters to run with low latency, result-
ing in differences of architectures between the target and source models. Previous work has
shown that it is difficult to adversarially train robust low-capacity DNNs from scratch com-
pared to high-capacity DNNs, especially with limited training samples. Thus, it is critical to
be able to use TL to train robust smaller DNNs.

Problem 3. Use TL to train an accurate and robustness-preserving target DNN model
from a robust source DNN model when the source and target tasks differ in both data domains
and model structures. This is a more complex situation as both the data domain and model
structure of the source and target models differ. On the one hand, large-scale source models
trained with rich data need to be adapted to train a smaller model, that is, with a smaller
number of parameters, for use in a target domain in which the amount of training data is
limited. On the other hand, there could also be differences in the number of output categories.
Therefore, we need a TL that is able to balance the predictive performance of the target model
on clean data with its robustness against adversarial and corrupted samples.

5.2.3 Key Challenge

The approaches and challenges to address these problems are considered below.
Approach Direction to Problem 1. We use contrastive learning (CL) [157] to direct the
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target model to reference the source model, aiming to generate similar representations for
positive pairs, consisting of target-domain samples with the same label, and dissimilar repre-
sentations for negative pairs, consisting of target-domain samples with different labels. Such
a strategy forces the target model to learn class-invariant representations based on a small
number of target-domain samples to enhance robustness. However, such a strategy requires
addressing several challenges.

Challenge 1. Effectively selecting positive and negative pairs and similarity metrics
for inducing the target model to learn robustness-relevant representations. Appropriate and
diverse contrastive pairs can help the model better capture the correct connections among the
anchor sample x, positive samples x+, and negative samples x−, facilitating the learning of
domain-invariant representations. Yet, there is still a lack of specific designs for contrastive
pairs to convey robust representation.

Challenge 2. Transforming the target-domain samples to fit the input layer of the source
model when the input feature dimensions of the target and source domains are different. Since
the source model is pre-trained, it is necessary to adapt the target-domain input samples to the
source model through an increase or decrease in dimensionality. Thus, we need an adaptive
input feature transformation method to align the input feature space dimensions between the
target and source domains.

Approach Direction to Problem 2. We use hidden-layer and output-layer distillation
to transfer robustness, with the hidden representations and soft labels as knowledge carriers.
This allows the target model to learn the output probability distribution from the sourcemodel
even with different model architectures. Also, similarity matching between representations
helps the target model learn high-level abstract information in the source model, particularly
robust underlying feature representations. Yet, this approach faces the following challenges.

Challenge 3. Efficiently extracting and matching hidden representations between source
and target models that may come from different representation spaces. When the source and
target models have different architectures, their hidden layer embeddingsmay differ in dimen-
sions and abstract meaning. Thus, effective representation alignment is needed to compare
robustness-relevant representations between the models.

Approach Direction to Problem 3. We leverage the dual adaptive dimension alignment
mechanism used in the approaches for Tasks 1 and 2 to address the dimensional differences
caused by differences in data domain and model structure. Also, to balance the regular pre-
dictive performance and robustness of the target model, we use a weighted comprehensive
loss that combines contrastive loss, distillation loss, and classification loss. However, using
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the output of the source model as supervisory information presents the following challenges.
Challenge 4. Mitigating erroneous supervision caused by incorrect predictions by the

source model on the target domain. The robustness and accuracy of the target-domain model
are not only affected by the specific TL algorithm but also by the inherent generalization
ability with respect to the robustness and accuracy of the source model obtained by adversar-
ial training on the source domain. When the target model uses the predictions of the source
model as supervision information to transfer robustness knowledge from the source domain,
the source model may produce incorrect supervision on the target domain due to issues such
as overfitting the source-domain distribution. Thus, we need a mechanism to alleviate the
misleading caused by incorrect predictions of the source model.

5.3 Design of Method CARD

This section introduces the design of the proposed robustness-preserving transfer learn-
ing method, Contrastive Adversarial Representation Distillation (CARD), to transfer the ad-
versarial robustness of DNNs across different tasks. The core idea of CARD is to produce
a robust target model with limited target-domain training data by contrastively imitating the
hidden representations of a robust source model. Each sample in the target-domain training
setDT

train serves as an anchor. The target model learns hidden representations by comparing
the input anchor sample x with positive samples x+ (transformed samples similar to x) and
negative samples x− (samples in DT

train dissimilar to x), bringing positive samples closer
and pushing negative samples further in the latent space. The hidden representations of the
source model on adversarial variants and corrupted variants of anchor samples are adopted as
carriers of robustness knowledge for transfer learning. The architecture of CARD comprises
three components: Robustness-aware View Construction, Adaptive Dimension Alignment,
and Contrastive Distillation Learning (see Figure 5.3).

5.3.1 Robustness-aware View Construction

In contrastive learning, contrastive views (including positive views x+ and negative
views x−) refer to different augmented versions of the anchor data. Contrastive pairs in-
volve positive pairs (x, x+) consisting of instances with similar features and negative pairs
(x, x−) consisting of dissimilar instances. The target model should be directed to minimize
the distance between samples in positive pairs (x, x+), and to maximize the distance between
samples in negative pairs (x, x−). Here, we detail the construction process of these pairs in
CARD (see the left side of Figure 5.3).
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Figure 5.3 Architecture of CARD.
Left: contrastive view construction with green for clean benign samples, red for clean malicious samples (different reds for
different categories of anomalies), blue for adversarial examples, and orange for naturally corrupted examples. Middle:

dual adaptive dimension alignment for input features and hidden representations. Right: learning of target model based on
TL losses (Lcon, Ldit) and local classification loss (Lcla).

Positive Pairs. Unlike standard contrastive learning (CL) [157] in the image domain,
where a positive pair (x, x+) usually consists of the anchor sample x and its transformation
x+ (e.g., rotations, flips), we propose two robustness-aware contrastive views for network
traffic data: the adversarial manipulation view x∗, and the natural corruption view x̃. The
positive pairs for each anchor sample x include (x, x+

1 ) = (x, x∗) and (x, x+
2 ) = (x, x̃).

Adversarial Manipulation View. The goal of minimizing the representation distance
between positive samples in CL is consistent with the goal of the model learning representa-
tions robust to adversarial perturbations. Adversarial and clean samples should have similar
representations in the latent space. Thus, we select the adversarial variant x∗ of the anchor x
as one positive view. The adversarial-view positive sample x∗ = x+δ is generated according
to Eq. (2-18) for x in the target-domain training set.

Natural Corruption View. Corrupted sample simulate the network traffic that is nat-
urally disturbed in the network environment. The goal of minimizing the representation
distance between positive samples is also consistent with the goal of the model learning rep-
resentations that are robust to natural corruptions. Thus, we select the corrupted version
x̃ of the anchor x as another positive view. To generate corruption-view positive sample
x̃ = x+ ζ , time, quantity, and length-related features of the network packets are modified by
random perturbations ζ sampled from a standard Gaussian distribution N (0, 1).

Negative Pairs. The negative sample should encourage themodel to learn the difference
between normal traffic and abnormal traffic. Especially for NID in multi-class classification
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scenarios, the model must not only learn the coarse-grained differences between benign and
malicious traffic patterns but also learn the fine-grained differences between different mali-
cious traffic categories. The negative pairs set consists of {(x, x−

1 ), ..., (x, x
−
N)}. When the

anchor x is a benign sample, we select N malicious samples from different attack types as
negative samples. We prioritize abnormal samples that are significantly different in features,
such as communication protocols, ports, and number of connection attempts. When the an-
chor is a malicious sample, we select a total ofN negative samples, including benign samples
and other types of abnormal samples that are different from the anchor. Afterward, each an-
chor sample will be simultaneously inputted into the source and target models together with
the positive and negative samples.

5.3.2 Adaptive Dimension Alignment

To support TL tasks across data domains, especially across different input feature spaces,
we design an Input Feature Dimension Alignment module to deal with the issue that the
number of feature dimensions dS of the source-domain sample x ∈ DS is inconsistent with dT

of the target-domain sample x ∈ DT . To adapt TL across model structures, especially across
different hidden representation spaces, we design two Hidden Representation Embedding
modules to align the number of the captured hidden representation dimension dSe of the source
model fS and dTe of the target model fT

θ . The process is shown in the middle of Figure 5.3.
Input Feature Dimension Alignment. In the process of learning the target model,

we need to input target-domain samples x ∈ DT
train into the pre-trained source model fS

to obtain contrast information and distillation information. When dT is different from dS ,
the source model cannot directly use the target domain as input. To this end, we apply the
following adaptive alignment measures in the input space. We align the dT -dimensional
target-domain input xwith the dimension dS of the source-domain input space using an Input
Dimension Alignment module EϑI . It consists of a linear transformation layer hϑI (x) with
optimizable parameters ϑI and an l2 normalization functionm(hϑI (x)) =

h
ϑI (x)

||h
ϑI (x)||2

. The two
hyperparameters of the linear transformation layer, input dimension and output dimension,
are automatically set to dT and dS , respectively. Such a way makes it possible for CARD

to adaptively align the input dimensions for cross-domain TL. Since the performance of the
input dimension alignment module affects the hidden representation and the class probability
output by the source model, which in turn affects the contrastive loss and distillation loss, we
optimize parameters ϑI of the linear transformation layer along with the parameters of fT

θ .
Hidden Representation Embedding. The output of the specific hidden layer of the
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model is termed as the hidden representation e. We calculate the contrastive loss based on
the representations, eS and eT , from the last hidden layers of the source and target mod-
els, respectively. To accommodate TL across various architectures with potentially inconsis-
tent representation dimensions, we introduce two hidden representation embedding modules:
Source Representation Embedding EϑS , and Target Representation Embedding EϑT . These
modules map the original representations eS and eT , which may have different dimensions, to
a common dimension de, facilitating the contrasting of representation characteristics. These
embeddingmodules resemble the Input Dimension Alignment module but with differences in
the input dimensions of the linear transformation layers (eS and eT ) and the output dimension
(a predefined constant de typically smaller than the input dimension). As the performance
of these modules affects the contrastive loss, the parameters of their linear transformation
layers, ϑS and ϑT , are jointly optimized along with the target model parameters during train-
ing. Afterward, aligned hidden representations from the source and target models are used
for CL. Moreover, the original representations are also given as input to the output layers of
both models to produce logit values for distillation and classification learning.

5.3.3 Contrastive Distillation Learning

Considering the diversity of TL goals, such as boosting adversarial robustness while
balancing the regular predictive performance of the target model, we design a contrastive
adversarial distillation learning algorithm (see the right side of Figure 5.3) to address the
requirements of different TL tasks. The detailed learning process is shown in Algorithm 5.1.

For each anchor sample x, as well as its positive samples x+ and negative samples
x−, we obtain the corresponding hidden representations of the same dimension from the
source and target models and output logit values. Then, we jointly optimize the parameters
of the target model fT

θ , input dimension alignment module EϑI , and hidden representation
embeddingmodulesEϑS ,EϑT , byminimizing aweighted lossLcard consisting of three terms:
contrastive loss Lcon, distillation loss Ldit, and classification loss Lcla, as shown in Eq. (5-1).

min
θ,ϑI ,ϑS ,ϑT

Lcard = α · Lcon + β · Ldit + γ · Lcla, (5-1)

where α, β, γ ∈ [0,1].
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Algorithm 5.1 Contrastive Adversarial Representation Distillation

Input: dT -dimensional target-domain training setDT
train, source model fS with input dimension dS and

output dimension cS , predefined hidden representation dimension de, input dimension alignmentmod-
uleEϑI , hidden representation embedding modulesEϑS andEϑT , adversarial sample generatorGadv,
natural corrupted example generator Gcor.

Output: robust target model fT
θ with output dimension cT .

1: for i = 1 to len(DT
train) do

2: select anchor sample x← xi ∈ DT
train

3: generate adversarial sample x+ δ ← Gadv(x, f
T
θ ); generate corrupted sample x+ ζ ← Gcor(x)

4: select N samples {x−
j }Nj=1 from DT

train with label ̸= y

5: construct positive pairs Xp = (x, x+
1 , x

+
2 )← (x, x+ δ, x+ ζ)

6: construct negative pairs Xn = (x, x−
1 , ..., x

−
N )

7: if dT ̸= dS then
8: X̂p, X̂n ← apply InputProjection EϑI (dT , dS) on Xp, Xn; Xp ← X̂p, Xn ← X̂n

9: end if
10: feed anchor x to source model fS and target model fT

θ

11: extract representations eS ← f rS (x),eT ← f rT

θ (x);
12: eS ← eS

E ← apply EϑS (eS , de), eT ← eT
E ← apply EϑT (eT , de)

13: output logit value oS ← fS(x), oT ← fT
θ (x)

14: for j = 1 to 2 do
15: feed x+

j to fS and fT
θ ; extract hidden representations e

+
j

S ← f rS

θ (x+
j ),e

+
j

T ← f rT

θ (x+
j )

16: e+j
S ← e+j

SE

← apply EϑS (e+j
S
, de); e+j

T ← e+j
TE

← apply EϑT (e+j
T
, de)

17: if j = 1 then
18: logit from target model oTadv ← fT

θ (x+ δ) = fT
θ (x

+
j )

19: end if
20: end for
21: for j = 1 to N do
22: feed x−

j to fS and fT
θ ; extract hidden representations e

−
j

S ← f rS

θ (x−
j ), e

−
j

T ← f rT

θ (x−
j )

23: e−j
S ← e−j

SE

← apply EϑS (e−j
S
, de); e−j

T ← e−j
TE

← apply EϑT (e−j
T
, de)

24: end for
25: compute loss LT

con(e
S , eT , {e+j

T }2j=1, {e−j
T }Nj=1); LS

con(e
T , eS , {e+j

S}2j=1, {e−j
S}Nj=1);

26: compute contrastive loss Lcon = LT
con + LS

con; compute classification loss Lcla(o
T , ytrue)

27: if cS = cT then
28: compute distillation loss Ldit(o

T , oTadv, o
S)

29: compute weighted loss Lcard = α · Lcon + β · Ldit + γ · Lcla

30: else
31: compute weighted loss Lcard = α · Lcon + γ · Lcla

32: end if
33: update parameters of fT

θ , EϑS , EϑT , EϑI

34: end for
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Contrastive Loss. This enables the target model fT
θ to learn hidden representations that

are invariant to certain data augmentations or data variations, such as representations that are
robust to adversarial perturbations or natural corruptions. We define the contrastive lossLcon

referring to CRD [156] and extend it to incorporate two new positive views. Lcon consists of
two parts: (i) the contrastive loss LT

con between the representation eS of the anchor sample x
on the source model and the representations of positive and negative samples on the target
model, (ii) and the contrastive loss LS

con between the representation eT of the anchor sample
x on the target model and the representations of positive and negative samples on the source
model, as shown in Eq. (5-2).

Lcon = LT
con(e

S, eT , e+
T
, e−

T
) + LS

con(e
T , eS, e+

S
, e−

S
) (5-2)

where e denotes the embedded hidden representation of the anchor input x, e+ and e− denote
the representation of the positive samples x+ and negative samples x− respectively, S and
T are used to mark representations from source and target models respectively. Specifically,
LT

con and LS
con are calculated according to (5-3) and (5-4), respectively, where eS and eT are

successively regarded as the anchor representation.

LT
con(e

S, eT , {e+j
T}2j=1, {e−j

T}Nj=1) = −[log h(eS, eT )

+
2∑

j=1

log h(eS, e+j
T
) +

N∑
j=1

log(1− h(eS, e−j
T
))],

(5-3)

LS
con(e

T , eS, {e+j
S}2j=1, {e−j

S}Nj=1) = −[log h(eT , eS)

+
2∑

j=1

log h(eT , e+j
S
) +

N∑
j=1

log(1− h(eT , e−j
S
))].

(5-4)

N denotes the number of negative samples, e+j and e−j denote the embedded representations
of the j-th positive sample x+

j and the j-th negative sample x−
j , respectively. The contrastive

score of any contrastive pair (a, b) is calculated as in (5-5) [156] , with higher scores indicating
greater similarity.

h(a, b) =
score(a, b)

score(a, b) +N · Pn

=
exp(a·b

τ
)

exp(a·b
τ
) + N

M

, (5-5)

whereM is the training datasetDT size, Pn is the noise probability in negative samples, τ is
the temperature parameter.

Distillation Loss. To guide fT
θ in imitating the output probability distributions, oS and

oSadv, from fS on both clean input x and adversarial input x+
1 = x∗ = x+ δ∗, we incorporate
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a logit-based distillation loss, as defined in (5-6).

Ldit(o
T , oS, oTadv, o

S
adv) = KL(oSτ |oT τ

) + KL(oSτ |oT τ

adv) + KL(oSτ

adv|oT
τ

adv))

= KL(fS(x)
τ |fT

θ (x)
τ
) + KL(fS

θ (x)
τ |fT

θ (x
∗)

τ
) + KL(fS

θ (x
∗)

τ |fT
θ (x

∗)
τ
)

= KL(S(
fS(x)

τ
)|S(f

T
θ (x)

τ
) + KL(S(

fS(x)

τ
)|S(f

T
θ (x

∗)

τ
) + KL(S(

fS(x∗)

τ
|S(f

T
θ (x

∗)

τ
),

(5-6)
where o denotes the output probability distribution from the softmax layer S, τ is a tempera-
ture factor to scale the logits. We avoid enforcing output dimension alignment to prevent the
prediction errors of fS on DT from misleading fT

θ in cross-domain TL involving different
label spaces. Thus, we apply Ldit only when the label spaces of fS and fT

θ are consistent.
Classification Loss. To balance clean performance and robustness of fT

θ in TL, we use
a CrossEntropy-based classification loss defined in (5-7), integrating standard and adversarial
training. In a data scarcity setting, weighted Lcla enables fT to learn clean example x and
adversarial example x∗ with truth label y from its own domain, rather than relying solely on
possibly imprecise signals from fS .

Lcla(o
T , y) = LCE(o

T , y) + LCE(o
T
adv, y) = LCE(f

T
θ (x), y) + LCE(f

T
θ (x

∗), y). (5-7)

5.4 Experimental Setup

5.4.1 Testbed

We implemented the method using PyTorch 2.2.0 and Python 3.9.18. Each experiment
ran three times with varied random seeds on anNVIDIAGeForce RTX 3090GPUwith Torch
Cuda 12.1. The code is available at https://github.com/RobTransfer/CARD.

5.4.2 Model Architectures

We used the WideResNet-34-10 [118] as the source model and used the popular ResNet-
18 [114] and lightweight MobileNet [158] as the target models to evaluate robustness-preserving
transfer learning (TL) across model architectures (see Table 5.1.) The source models were
trained by PGD-AT [14] (defined in Eq. (2-30)) with l∞-PGD adversarial examples (AEs)
generated with ϵ = 0.1, ϵstep = 0.05, and 20 iterations.

5.4.3 Datasets

We evaluated TL scenarios between four datasets in the network intrusion field, divided
into source-domain and target-domain datasets. Detailed information is shown in Table 5.2.
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Table 5.1 Model architecture and parameter information

Role Architecture Block Type Total Params Forward Size Params Size Total Size

Source Model WideResNet-34-10 Residual 46,159,545 7.38M 176.08M 183.47M
Target Model ResNet-18 Residual 11,172,297 1.29M 42.62M 43.91M
Target Model MobileNet Separable 3,215,625 1.69M 12.27M 13.95M

Table 5.2 Dataset information

Role Name ClassNum
Percentage of
Target Train

Num of Limited
Train-Benign

Num of Limited
Train-Malicious

Num of Limited
Train

Target
Dataset

UNSW-NB15
(WithExploit)

2
5% 2595 978 3573

10%∼50% 5189∼25945 1956∼9776 7145∼35721

Target
Dataset

UNSW-NB15
(All)

10
5% 2595 2704 5299

10%∼50% 5189∼25945 5408∼27040 10597∼52985
Source
Dataset

UNSW-NB15
(NoExploit)

9
5% 2595 1727 4322

10%∼50% 5190∼25950 3454∼17270 8644∼43220
Source
Dataset

NSL-KDD
(All)

5 5% 3368 2931 6299

Source-domain dataset. The two datasets used as source-domain datasets in TL are
UNSW-NB15 (NoExploit) and NSL-KDD (All).

• UNSW-NB15 (NoExploit). This dataset is derived from the UNSW-NB15 [159] dataset,
containing both benign traffic and 8 distinct types of network attacks. It excludes any
samples from the exploit attack category, making it a focused subset for learning pur-
poses without exploit data.

• NSL-KDD (All). This dataset is the complete version of NSL-KDD [160] , which ad-
dresses the redundancy and imbalance issues in the original KDD’99 [161] dataset. It
includes benign traffic and all four major attack types: DoS, Probe, R2L, and U2R.
The NSL-KDD dataset is widely used in NID research, offering a more balanced and
representative distribution of attack and normal traffic samples, making it suitable for
training models to detect a wide range of network intrusions.

Target-domain dataset. The two datasets used as target-domain datasets in TL are
UNSW-NB15 (WithExploit) and UNSW-NB15 (All).

• UNSW-NB15 (WithExploit). This dataset is also derived from the UNSW-NB15 [159]

dataset, attack samples from the exploit attack category. It focuses specifically on
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exploit-based intrusions, which involve attackers taking advantage of vulnerabilities
in software or systems.

• UNSW-NB15 (All). This dataset is the complete version of UNSW-NB15 [159] dataset,
which includes benign traffic and all 9 types of attack samples, providing a compre-
hensive view of the dataset’s attack landscape. It encompasses various categories of
network attacks, including exploit, fuzzers, backdoor, DoS, reconnaissance, generic,
worms, shellcode, and analysis. It is suitable for evaluating a model’s performance
across diverse and complex threat scenarios.

5.4.4 Attack Configuration

Parameters in Adversarial Attack. To evaluate the adversarial robustness of the target
model, we use the l∞-PGD algorithm to generate adversarial examples (AEs) in a white-box
setting. The attack is configuredwith amaximum perturbation ϵ = 0.1, step size ϵstep = 0.05,
and runs for 20 iterations. This ensures the adversarial perturbations remain within the l∞
norm constraint while effectively altering the input to fool the model.

Parameters in Natural Corruption. Random noise is applied to specific traffic fea-
tures related to time, quantity, and length in the clean input. This noise follows a Gaussian
distribution with a mean of 0 and a standard deviation of 1, simulating random environmental
noise that can occur in a real-world network.

5.4.5 Defense Configuration

Robustness-preserving TL Baselines. We compared CARD with a baseline where the
target model is standardly trained from scratch (StdTrain), conventional fine-tuning (FT),
conventional knowledge distillation (KD), SOTA adversarial fine-tuning (such as FRFE and
TWINS), and SOTA adversarial knowledge distillation (such as VAD and AAD) methods
with open source code (see Table 5.3).

Parameters in Training with CARD. During the contrastive distillation learning with
CARD, the coefficients α for contrastive loss function Lcon (defined in Eq. (5-2)) and β for
distillation loss functionLdit (defined in Eq. (5-6)) are set at 0.33, and γ for classification loss
function Lcla (defined in Eq. (5-7)) is set to 0.5. Lcon used a temperature τ of 0.1 with N =

4,096 negative samples. The models were trained for 50 epochs, including an early stopping
mechanism.

Testing Pipeline. We tested CARD in TL scenarios involving different model architec-
tures and data domains according to Figure 5.2. For TL across data domains, we created
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Table 5.3 Comparison of robustness-preserving transfer learning (TL) methods

Transfer
Method

Robustness
Transferring

Designed
for NID

Evaluate
Binary

Classification

Evaluate
Multi-Class
Classification

Differences between Source and Target Tasks
Same Model Different Models Different Models

Different Domains Same Domain Different Domains

FT [150]

KD [153]

FRFE [85]

TWINS [88]

VAD [91]

AAD [97]

CARD

two scenarios based on the similarity of the input feature spaces between the target-domain
dataset and source-domain dataset.

• TL in the Same Input Feature Space. In this scenario the target NID dataset has
the same input feature space as the source NID dataset, that is, the input features and
number of dimensions are the same. This occurs when the target dataset is gener-
ated using the same type of network, protocols, and network data collection tools as
the source dataset. For experiments in this scenario, we use the training samples in
UNSW-NB15 (NoExploit) as source-domain training dataset, and the training sam-
ples in UNSW-NB15 (WithExploit) as target-domain training dataset.

• TL in Different Input Feature Spaces. In this scenario, the source NID dataset differs
from the target NID dataset in the input feature space. This typically occurs when
datasets are generated for distinct network types using different protocols, or when
advances in monitoring tools lead to capturing more meaningful features, altering the
feature space. Also, attack distributions may change due to older attacks becoming
irrelevant from patching and entirely new attack families being introduced. For this
scenario, we use the training samples in NSL-KDD (All) as source-domain training
dataset and training samples in UNSW-NB15 (All) as the target-domain training set.

Particularly for network intrusion detection, we assessed two detection granularities for
each transfer learning case: multi-class classification and binary classification.

• TL in Multi-class Classification. For TL in the Same Input Feature Space, we learn
a 2-class detector on UNSW-NB15 (WithExploit) from a source 9-class detector ad-
versarially trained on UNSW-NB15 (NoExploit). For TL in Different Input Feature
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Spaces, we learn a 10-class detector on UNSW-NB15 (All) from a source 5-class de-
tector adversarially trained on NSL-KDD (All).

• TL in Binary Classification. For TL in the Same Input Feature Space, we learn a binary
classifier on UNSW-NB15 (WithExploit) from a source binary classifier adversarially
trained on UNSW-NB15 (NoExploit). For TL in Different Input Feature Spaces, we
learn a binary classifier on UNSW-NB15 (All) from a source binary classifier adver-
sarially trained on NSL-KDD (All).

5.4.6 Evaluation Metrics

For each transfer learning case, we reported the average evaluation results of the target
model across multiple runs with three random seeds {42, 43, 44}. We evaluated the perfor-
mance of the target model on different versions of the target domain test samples using the
following metrics: Accuracy (Acc), F1-score (F1), Recall, Precision (Precis), False Positive
Rate (FPR), and False Negative Rate (FNR). Results on clean test samples (e.g CleAcc), ad-
versarial test samples (e.g AdvAcc), and corrupted test samples (e.g CorAcc) reveal the clean
performance, adversarial robustness, and natural robustness of the target model, respectively.

5.5 Horizontal Experimental Results and Analysis

In this section, we first evaluate the proposed method using limited target-domain train-
ing data against SOTA adversarial fine-tuning and distillation methods approaches in various
TL scenarios: transfer across data domains (Section 5.5.1), transfer across model architec-
tures (Section 5.5.2), and transfer across both domains and models (Section 5.5.3).

5.5.1 Comparison on Cross-domain TL Tasks with SOTA Fine-Tuning
Methods Using Scarce Target Domain Training Data

In these experiments, we examine adapting a pre-trained model to build a target-domain
NID model with limited target-domain training data. We compare CARD with a baseline in
which the target model is trained from scratch (referred to as StdTrain), basic fine-tuning
(FT [150] ), and SOTA robustness-preserving fine-tuning methods (TWINS [88] and FRFE [85] ).
We use the WideResNet-34-10 source model as the target-domain classifier, adjusting only
the output layer dimensions. We assess two cross-domain TL tasks: within the same input
feature space and across different spaces.

Task 1. Cross-domain TL in the Same Input Feature Space. We trained robust multi-
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(a) TL across domains with the same input space.

(b) TL across domains with different input spaces.

Figure 5.4 Comparison with SOTA fine-tuning methods on cross-domain TL.
(a) Generate UNSW-NB15 (WithExploit) detectors by fine-tuning robust UNSW-NB15 (NoExploit) detectors.

(b) Generate UNSW-NB15 (All) detectors by fine-tuning robust NSL-KDD (All) detectors.

class and binary NID models using PGD-AT on UNSW-NB15 (NoExploit) with 100% la-
beled data, and used them as source models to learn target-domain models on UNSW-NB15
(WithExploit) with only 5% (3573) labeled data.

Results. See Figure 5.4 (a) and Figure 5.5 (a) for results. CARD shows major improve-
ments over StdTrain in both robustness and regular predictive performance. For multi-class
classification, AdvAcc and CorAcc increase by 51.14% and 46.33%, while StdAcc and F1
scores rise by 10.63% and 14.25%, respectively. For binary detection, CARD achieves im-
provements for the AdvAcc (50.14%), CorAcc (36.87%), StdAcc (9.96%), and F1 (14.81%)
metrics. In contrast, the baseline FT [150] falls short in preserving robustness, yielding com-
paratively modest gains in AdvAcc (9.08%) and StdAcc (7.94%). Compared to adversarial
fine-tuning methods, in multi-class classification, CARD achieves 6.33% and 2.33% higher
AdvAcc compared to TWINS [88] and FRFE [85] , respectively, and 3.67% and 4.33% higher
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(a) TL across domains with the same input space.

(b) TL across domains with different input spaces.

Figure 5.5 Adversarial comparison with SOTA fine-tuning methods on cross-data domain TL.
The experimental setup is the same as Figure 5.4. Using finer-grained metrics for adversarial robustness.

CorAcc. This advantage is more pronounced in binary classification, where CARD outper-
forms TWINS and FRFE by 3.33% and 30% in AdvAcc, and 5.33% and 9.67% in CorAcc,
respectively.

Task 2. Cross-domain TL in Different Input Feature Spaces. We use the same settings
as the previous task, but replace the source-domain dataset with NSL-KDD (All) and the
target-domain dataset with UNSW-NB15 (All), using only 5% (5299) of the labeled target-
domain training data.

Results. Results are presented in Figure 5.4 (b) and Figure 5.5 (b). CARD significantly
outperforms StdTrain, boosting AdvAcc and CorAcc by 39.19% and 37.52% in multi-class
classification, and showing notable advancements in binary detection under various metrics.
Also, CARD improves over FT, with an increase in AdvAcc (27.5% and 29.65% in multi-
class and binary classification), and superior regular performance, exhibiting 18.76% higher
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StdAcc and 23.97% higher F1 in multi-classification and comparable results in binary clas-
sification. Compared with TWINS and FRFE, CARD also has superior performance. In
multi-class classification, AdvAcc is equivalent to TWINS and notably higher than FRFE,
while CorAcc is 13.33% and 12% higher, respectively. In the binary case, AdvAcc is 7.33%
and 24% higher, and CorAcc is 5.33% and 13% higher, respectively.

Summary. These results show that CARD outperforms baseline FT and SOTA adversar-
ial FT methods in generating robust and accurate target models with limited training data.
The advantages are also demonstrated in other robustness evaluation metrics on adversarial
samples, like advRecall, advFNR, etc.

5.5.2 Comparison on Cross-model TL Tasks with SOTA Distillation
Methods Using Scarce Target Domain Training Data

We explore TL scenarios where a lightweight target model (student) but with a com-
pact target-domain task is trained to inherit the robustness of a larger source model (teacher).
Both source and target models are trained on the same dataset, with the source model us-
ing 100% of the training data and the target model distilled with only 5%. We compare
CARD against StdTrain, basic distillation (KD [153] ), and SOTA robustness-preserving meth-
ods (VAD [91] , AAD [97] ) on two datasets, UNSW-NB15 (NoExploit) and NSL-KDD (All).
The source model is distilled into ResNet-18 and MobileNet (outlined in Table 5.1).

Task 1. TL across Models with Similar Building Blocks. We trained separate robust
multi-class and binary NID models using PGD-AT on UNSW-NB15 (NoExploit) with 100%
training data. These models served as sources to distill both multi-class and binary NID
models based on ResNet-18, using only 5% (4322) of the training data from UNSW-NB15
(NoExploit) or 5% (6299) of the training data from NSL-KDD-All.

Results. Figure 5.6 (a) and Figure 5.7 (a) show the results. CARD surpasses other
methods in multi-class and binary classification scenarios. Compared to KD, AdvAcc and
CorAcc increase by 37.81% and 18.00% in the multi-class case, and by 26.67% and 24.00%
in the binary case. This suggests that a target model derived from a robust source model
via standard KD-based TL does not inherit robustness. Compared to AD methods, CARD

improves AdvAcc and CorAcc by 11.67% and 10.00% on average in the multi-class case, and
by 10.00% and 4.67% in the binary case. This shows CARD surpasses SOTA in robustness
transfer across architectures.

Task 2. TL across Models with Different Building Blocks. We use the same settings as
the previous task, except for replacing the target domain model with MobileNet.
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Results. Results are presented in Figure 5.6 (b) and Figure 5.7 (b). In comparing Std-
Train and CARD on MobileNet, CARD consistently outperforms StdTrain in both robustness
and regular performance. Particularly in binary classification, the performance gap is more
evident than in multi-class classification. Furthermore, compared to the distillation methods,
CARD shows superior robustness preservation over KD, VAD, and AAD. Compared to KD,
AdvAcc and CorAcc increase by 44.67% and 31.33% in the multi-class case, and by 47.33%
and 24.00% in the binary case. Compared to ADmethods, CARD boosts AdvAcc and CorAcc
by 15.17% and 26.00% on average in the multi-class case, and by 12.00% and 8.33% in the
binary case.

Summary. CARD proves its effectiveness in maintaining robustness while preserving
generalization in lightweight NID models with limited training data, surpassing baseline KD
and SOTA methods like VAD and AAD. Its robustness strengths extend to other metrics on
adversarial traffic, like advF1, advFPR, etc.
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(a) TL across models with similar building blocks.

(b) TL across models with different building blocks.

Figure 5.6 Comparison with SOTA distillation methods on cross-model TL.
(a) Distill robust WideResNet-34-10-based UNSW-NB15-NoExploit and NSL-KDD-All detectors to ResNet-18.
(b) Distill robust WideResNet-34-10-based UNSW-NB15-NoExploit and NSL-KDD-All detectors to MobileNet.
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(a) TL across models with similar building blocks.

(b) TL across models with different building blocks.

Figure 5.7 Adversarial comparison with SOTA distillation methods on cross-model architecture TL.
The experimental setup is the same as Figure 5.6. Using finer-grained metrics for adversarial robustness.
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5.5.3 Comparison on Cross-domain-and-model TL Tasks with Train-
ing from Scratch Using Scarce Target Domain Training Data

These experiments address TL tasks across data domains andmodel architectures, which
are crucial for real-world NID due to dynamic networks, emerging threats, and resource
constraints. Given the absence of tailored robustness-preserving TL methods, we evaluated
CARD’s performance on two target-domain models, ResNet-18 and MobileNet, for TL tasks
within the same input feature space and across different input feature spaces.

Task 1. Cross-domain-and-model TL in the Same Input Feature Space. We use the
same setup introduced in Section 5.5.1, but replace the target model with ResNet-18 and
MobileNet, yielding four TL tasks across domains and models, including TL from the multi-
class NID model on UNSW-NB15 (NoExploit) to ResNet-18 and MobileNet on UNSW-
NB15 (WithExploit), and their binary detection versions.

Results. See Figure 5.8 (a) (b) and Figure 5.9 (a) (b) for results. CARD demonstrates
remarkable advantages in robustness compared to StdTrain. In multi-class classification on
ResNet-18, CARD achieves AdvAcc and CorAcc rates of 81% and 84%, surpassing StdTrain
by significant margins. On MobileNet, although the advantage slightly decreases due to
the larger structural difference, CARD still outperforms StdTrain by 41.45% and 36.42% in
AdvAcc and CorAcc, respectively. Moreover, CARD shows superior generalization on clean
samples, with recall rates reaching 87% on ResNet-18 and 84% on MobileNet, substantially
higher than StdTrain. CARD’s FPR on both models is notably lower than StdTrain.

Task 2. Cross-domain-and-model TL in Different Input Feature Spaces. We use the
setup introduced in Section 5.5.1, except for replacing the target-domain model with ResNet-
18 and MobileNet successively, creating four TL tasks across different data domains and
model architectures. This includes TL from the multi-class NID model on NSL-KDD (All)
to ResNet-18 and MobileNet on UNSW-NB15 (All), along with their binary classification.

Results. Results are presented in Figure 5.8 (c) (d) and Figure 5.9 (c) (d). The perfor-
mance of the target model in this scenario decreases compared to TL in the same input feature
space. The reason is that NSL-KDD (All) has a wider range of categories than UNSW-NB15
(WithExploit), making training more complex. Nevertheless, CARD outperforms StdTrain on
all metrics with lower standard deviations. Robustness metrics highlight our method’s su-
periority, with AdvAcc and CorAcc reaching 60% and 61% respectively on ResNet-18, and
60% and 54% respectively on MobileNet, which are substantially higher than StdTrain in
multi-class detection. In the binary detection, CARD’s AdvAcc surges to 81% on ResNet-18
and MobileNet, indicating a substantial lead of 63% and 57% over StdTrain, respectively.
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(a) TL across domains with same input space and models with similar blocks.

(b) TL across domains with same input space and models with different blocks.

(c) TL across domains with different input spaces and models with similar blocks.

(d) TL across domains with different input spaces and models with different blocks.

Figure 5.8 Comparison with standard training from scratch on cross-domain&model TL.
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(a) TL across domains with same input space and models with similar blocks.

(b) TL across domains with same input space and models with different blocks.

(c) TL across domains with different input spaces and models with similar blocks.

(d) TL across domains with different input spaces and models with different blocks.

Figure 5.9 Adversarial comparison with standard training from scratch on cross-domain&model TL.
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Moreover, CARD also balances regular predictive performance well. Compared with
StdTrain, CARD reduces the FNR of malicious traffic and the FPR of benign traffic by 28.2%
and 26.92% onResNet-18, and by 28.87% and 29.39% onMobileNet inmulti-class detection.

Summary. These results highlight CARD’s efficacy and flexibility in preserving ro-
bustness when learning target models with differing data domains and lighter architectures
compared to the source model, significantly outperforming training from scratch.

5.6 Vertical Experimental Results and Analysis

In prior experiments, we assessed TL under limited training conditions by utilizing only
5% of the target-domain training samples. In this section, we mainly investigate how the
number of target-domain training samples affects the model’s adversarial robustness against
adversarial examples and its regular predictive performance on clean examples. We examine
the impact of target-domain training data number on TL tasks across data domains (Sec-
tion 5.6.1), model architectures (Section 5.6.2), and both(Section 5.6.3), respectively using
the setups introduced in Section 5.5.1, Section 5.5.2, and Section 5.5.3. We evaluate CARD’s
performance as the number of training samples increases, incrementally varying the percent-
ages to {5%, 10%, 20%, 30%, 40%, 50%} (see Table 5.2). We compare CARD with StdTrain,
SOTA adversarial fine-tuning, and SOTA adversarial distillation methods under the most
challenging TL tasks, with results averaged from three random seeds. Finally, we conduct
ablation studies on the proposed loss function.

5.6.1 Impact of Target Domain Training Data Number on Cross-domain
TL Tasks

We compare CARD against other methods under various amounts of data on the UNSW-
NB15 (All) multi-class task from an NSL-KDD (All)-pretrained model because this is the
most challenging cross-domain TL task we have performed in Section 5.5.1. We will see
how different methods change and how CARD compares with StdTrain, basic fine-tuning
(FT [150] ), and SOTA robustness-preserving fine-tuning methods (TWINS [88] and FRFE [85] )
as data increases.

Results. As shown in Figure 5.10, StdTrain shows the most significant improvement,
heavily relying on ground truth data for effective generalization. While other TL methods
also improve with more data, their progress is slower than StdTrain due to their dependence
on both the data and the source model. Among the TL methods, CARD stands out, consis-
tently outperforming as more data is added. However, the benefits of TL diminish as data
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availability increases, with StdTrain eventually matching or even surpassing some TL meth-
ods. At 5% data, CARD outperformed StdTrain by 23.61% in F1 and 37.92% in CorrAcc,
but as more data became available, the differences narrowed to 13.33% and 34.51%, respec-
tively. In terms of FPR, we see a reduction across the board, with StdTrain benefiting themost
from increased exposure to malicious data. Its FNR dropped from 45% to 38%, marking the
greatest improvement. As more data was introduced, StdTrain overtook VAD in Precision,
surpassing it after 40% of the data was available. Nonetheless, according to the results of
AdvAcc, robust-preserving TL techniques are still very valuable against adversarial robust-
ness, of which CARD is the most significant, as StdTrain has limited gains in this regard even
with more training data.

Figure 5.10 Impact of target-domain training data amount on cross-domain TL.
Generate a 10-class UNSW-NB15 (All) detector by fine-tuning a robust 5-class NSL-KDD (All) detector.
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5.6.2 Impact of Target Domain Training Data Number on Cross-model
TL Tasks

Likewise, we compare CARD against other methods under various amounts of data on
the NSL-KDD (All) multi-class task to MobileNet from the source model, as this is the most
challenging cross-model TL task we have performed in Section 5.5.2. We aim to compress
a multi-class classifier into a lightweight one with different basic model blocks. We will
see how different methods change and how CARD stands against StdTrain, basic distillation
(KD [153] ), and SOTA robustness-preserving distillation methods (VAD [91] and AAD [97] ) as
training data size increases.

Figure 5.11 Impact of target-domain training data amount on cross-model TL.
Distill a robust WideResNet-34-10-based 9-class UNSW-NB15 (NoExploit) detector to MobileNet.

Results. As shown in Figure 5.11, the results demonstrate steady improvement forCARD

as training data increases. TL methods remain advantageous in limited data scenarios, high-
lighting the value of TL when little data is available. For CorAcc, the gap between CARD

and StdTrain narrows from 43.34% at 5% of training data to 38.87% at 50%, showing only
slight improvement. In terms of FPR, CARD outperforms StdTrain by 21.33% at 50% data,
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compared to a 21.18% gap at 5%. Across various metrics, we observe that StdTrain, lacking a
robustness mechanism, sees limited benefit from more data. TL methods, on the other hand,
while slowly losing advantage as more data becomes available, they remain strong. Among
them, CARD continues to excel, maintaining a 9.19% lead over the best SOTAmethod (AAD)
across multiple metrics.

5.6.3 Impact of Target Domain Training Data Number on Cross-domain-
and-model TL Tasks

We compared CARD with StdTrain across different amounts of training data in a chal-
lenging cross-domain and cross-model TL task. In this TL scenario, the target model, Mo-
bileNet, is more lightweight than the source model, WideResNet-34-10, and the input feature
space shifts from the 5-class NSL-KDD (All) to the 10-class UNSW-NB15 (All).

Figure 5.12 Impact of target-domain training data amount on cross-domain-and-model TL.
Generate a MobileNet-based 10-class UNSW-NB15 (All) detector from a WideResNet-34-10-based robust 5-class

NSL-KDD (All) detector.

Results. Results in Figure 5.12 show that StdTrain requires more training data for rea-
sonable performance than CARD. We can see that The performance increase from CARD is
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gentle, with no significant gap between using little data and abundant data. With 50% data,
CARD performs better on StdAcc with lower FPR and FNR, but the improvement is not much
higher than with 5% data. This indicates that CARD effectively transfers robustness and
predictive knowledge from a pre-trained source model even with limited target-domain data.
When the performance gained through TL from source models is analogous to having abun-
dant data, TL becomes meaningful and is worth doing. Additionally, increased training data
does not compromise the robustness advantage of CARD.

Summary. Even with more target-domain training data, CARD consistently excels in
adversarial robustness and regular predictive performance compared to StdTrain and SOTA
TL methods across various challenge TL tasks. Moreover, as training data increases, CARD’s
advantage in generalization is gradually caught up, but its robustness lead remains difficult
to narrow by others.

5.6.4 Ablation Study on Loss Function

Loss of CARD is composed of three components: contrastive loss Lcon, distillation loss
Ldit, and classification lossLcla. In this subsection, we analyze how the different components
of loss Lcard = α · Lcon + β · Ldit + γ · Lcla (described in Eq. (5-1)) can work independently
or in combination.

We use cross-model architecture TL tasks to assess the performance of CARD under
various influences because in these tasks, all three components are used. When the source
and target-domain datasets have very different properties, such as distinct output categories
and different numbers of classes, the distillation loss Ldit based on KL divergence fails to ac-
commodate output logical value vectors with differing dimensions for distance measurement.
Given that forcing the output dimensions of the source model to be aligned with the target
model can potentially introduce significant noise, to avoid the source model misleading the
target model, we opt not to use distillation loss in the cross-domain transfer task.

We assess the performance of CARD on two datasets, UNSW-NB15 (NoExploit) and
NSL-KDD (All). We test the role each loss term plays individually or in combination. We
use the same dataset for both the source and target domains, training the source model with
100% of the data and distilling the target model with only 5%. This allows us to assess the
effectiveness of CARD in handling data scarcity. The average results across three random
seeds (41, 42, 43) are reported.

Task 1. Cross-model TL on Various Losses using UNSW-NB15 (NoExploit). When
distilling WideResNet-34-10-based robust UNSW-NB15 (NoExploit) detectors to ResNet-
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Figure 5.13 Ablation study on loss function in cross-model TL tasks on UNSW-NB15 (NoExploit).
Distill robust UNSW-NB15 (NoExploit) detectors based on WideResNet-34-10 to ResNet-18.

18, which includes multi-class and binary classification cases, we observe that employing all
three losses simultaneously consistently yields the optimal results.

Results. See Figure 5.13 for results. When the Lcla is used with Ldit, the results are
comparable to that of the Lcla combined with the Lcon. This is reasonable because Lcon

attempts to achieve a similar knowledge distillation goal as Ldit at the hidden representation
level, which makes it free from the constraint that the source and target models have to have
the same number of categories and thus can be used on any TL task, including cross-domain
TL tasks. Through our experiments, we have found that the Ldit tends to be more effective
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Figure 5.14 Ablation study on loss function in cross-model TL tasks on NSL-KDD (All).
Distill robust NSL-KDD (All) detectors based on WideResNet-34-10 to ResNet-18.

for training binary classification models while Lcon tends to be more effective for multi-
class NID models. And classification loss Lcla is crucial in improving the regular predictive
prediction performance measured by StdAcc. Overall, integrating these losses can improve
the predictive performance and robustness of the model generally.

Task 2. Cross-model TL on Various Losses using NSL-KDD (All). In these experiments,
we distill robust WideResNet-34-10-based NSL-KDD (All) detectors to ResNet-18 for both
multi-class and binary classification cases. We observed analogous trends and performance
as previous task, indicating a stable behavior of our loss function across different datasets.

141



Doctoral Dissertation of XIDIAN UNIVERSITY

From Figure 5.14, it is evident that across various TL tasks, whether multi-class classi-
fication or binary classification on the target-domain dataset, CARD achieves the best results
when all three losses are combined. Also, we observe that combining Ldit and Lcon yields
sub-optimal outcomes. This combination may hinder effective optimization as each loss
pulls parameter updates in divergent directions. For instance, distillation loss might enforce
a distribution shape incongruent with that enforced by Lcon. However, incorporating Lcla

mitigates this issue by introducing ground truth, thereby directing optimization toward accu-
rate class predictions. Such a way ensures the target model can stably learn the underlying
representation, thereby better balancing the regular performance and robustness of themodel.

5.6.5 Evaluation on Adaptive Attack

In robustness-preserving TL, the hybrid and implicit nature of the target model’s robust-
ness origins make it difficult for an attacker, even with access to the white-box target model’s
parameters, to infer the complete defense algorithm, such as the robust source model’s pa-
rameters and TL strategy. Nevertheless, considering sophisticated threats that may arise
in the real world, we enhanced the adversary’s capabilities and conducted adaptive attacks
against the target model for further robustness evaluation. Adaptive attacks, unlike static eva-
sion attacks, dynamically adjust attack strategies to counter defense mechanisms [57] , posing
a greater threat. We designed two adaptive strategies (see Fig. 5.15) and evaluated models
trained with 30 epochs in the multi-class case (see Fig. 5.16, Fig. 5.17, and Fig. 5.18).
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Figure 5.15 Adaptive attack strategies.

Task 1. Source Model-based Adaptive Attack (SM-Adapt). This adaptive strategy as-
sumes the attacker has white-box access to fS , fT

θ , training datasetDT , and knowledge of the
perturbation algorithm A (e.g., PGD) used in the adversarial pretraining of fS . 1⃝ Attacker
generates adversarial examples x∗ for target domain using fS andAwith 20 iterations. 2⃝ x∗

undergoes further perturbation via fT
θ and A, producing adaptive adversarial examples x⋆.

3⃝ In cross-domain TL, due to mismatched input features or label spaces, the attacker must
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Figure 5.16 Robustness against adaptive attacks in cross-domain TL.

Figure 5.17 Robustness against adaptive attacks in cross-model TL.

first fine-tune fS with DT before generating perturbations.
Task 2. Aggregated Attacks-based Adaptive Attack (AA-Adapt). This strategy assumes

that the attacker has white-box access to fT
θ and knows that its robustness partly stems from

A (e.g., PGD). The attacker seeks to enhance the attack by sequentially applying attacks
{A1, . . . ,AK} on x using fT

θ . We employed the AutoAttack [32] framework. In our imple-
mentation of K = 2 setting, 1⃝ attacker first generates x∗ using AutoPGD [32] alongside
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Figure 5.18 Robustness against adaptive attacks in cross-domain-and-model TL.

iterations 100. 2⃝ x∗ are then perturbed using DeepFool [12] with 100 iterations, finally pro-
ducing x⋆. The results show that CARD consistently outperforms baselines in robustness to
adaptive attacks across various TL tasks.

5.6.6 Evaluation of Time Cost

We compared the training time of 50 epochs of CARD and baselines in the data scarcity
setting for multi-class detection.
Results. Compared to robustness-preserving TL baselines, CARD trains faster than AAD [97]

(2023) and TWINS [88] (2023) but slower than FRFE [85] (2020) and VAD [91] (2020).

• Cross-domain TL: Average per-epoch time for StdTrain, FT, TWINS, FRFE, andCARD

is 1.13 seconds (s), 1.11s, 40.01s, 1.14s, and 20.58s, respectively.

• Cross-model TL: Average per-epoch time for StdTrain, KD, VAD, AAD, and CARD is
0.35s, 0.76s, 3.14s, 15.68s, and 4.40s, respectively.

• Cross-domain-and-model TL: Average per-epoch training time for StdTrain and CARD

is 0.27s and 3.15s, respectively.

144



Chapter V Adversarial Robustness Transfer with Contrastive Adversarial Representation Distillation

Moreover, we found the lighter the target model, the lower the overhead introduced by CARD.
Using ResNet or MobileNet as target model reduces time by an average of 80.89% compared
to retaining WideResNet from the source model. MobileNet, being the lighter option, trains
20.39% faster on average than ResNet. In summary, CARD outperforms baselines in robust-
ness and clean performance, with a slight time cost over standard TL but greater efficiency
than TWINS and AAD.

5.7 Summary

In this chapter, we introduceContrastiveAdversarial RepresentationDistillation (CARD),
the first robustness-preserving transfer learning method tailored for DNN-based network in-
trusion detection. CARD produces an accurate and robust target model by leveraging a robust
source model, addressing two key challenges: limited target-domain training data and the
robustness of the target model against adversarial attacks and natural noise. The contrastive
transfer learning algorithm, based on robustness-aware views, captures domain-invariant ro-
bustness through adversarial and natural corruption views. Additionally, the adaptive di-
mension alignment mechanism enables the flexible transfer of both adversarial and regular
knowledge across different data domains and model architectures. Extensive experiments
demonstrate the effectiveness of CARD in transferring adversarial robustness across data do-
mains (e.g., fine-tuning) and model structures (e.g., distillation), as well as in more complex
tasks involving lightweight target models with limited training data. In the future, we will
explore its application in transferring robustness from larger foundation models.
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Chapter VI Conclusion and Future Work

6.1 Conclusion

Recent advancements in deep learning (DL) have transformed fields like computer vi-
sion and cybersecurity. Deep neural networks (DNNs), with their multi-layered architec-
tures, are adept at capturing complex patterns from large datasets, making them integral to
modern AI systems. However, the opacity in DNN decision-making has led to significant se-
curity risks, particularly adversarial attacks. Subtle adversarial manipulations on the data can
severely degrade model performance while evading detection, which poses a serious threat to
applications such as autonomous driving and intrusion detection. This dissertation focuses
on enhancing DNN adversarial robustness against adversarial attacks, addressing three key
issues: generalizing adversarial robustness to unknown attack types, providing tight guar-
antees for adversarial robustness, and effectively transferring adversarial robustness across
different tasks.

Our primary contributions are as follows:

• To enhance the generalization of adversarial robustness against unknown attacks, La-
tent RepresentationMixup (LarepMixup) is proposed as a robust training framework
utilizing on-manifold and off-manifold mixed examples. This approach includes a data
augmentation technique based onmulti-modemanifold interpolation to generatemixed
samples near the decision boundary using convex and binary mask mixing. Addition-
ally, a multi-label training algorithm leverages mixed semantic samples and labels to
smooth the decision boundary. Experiments demonstrate thatLarepMixup improves
both pixel-level and representation-level robustness in white-box and black-box scenar-
ios, enhancing generalization across various input and latent space perturbations.

• To tighten the certification of adversarial robustness in DNNs, Multi-order Adaptive
Randomized Smoothing (MARS) is proposed as a certified defense framework that
leverages high-order information to extend the certified robust region. This framework
includes an adaptive randomized smoothing algorithm that uses zero-order and first-
order information to calculate robust radii, achieving tighter lower bounds of robust-
ness than existing methods. Additionally, a dimension-wise robust radius calculation
algorithm based on feature sensitivity allows for fine-grained robustness certification
across heterogeneous input features. Experiments demonstrate that MARS effectively
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certifies adversarial robustness in larger lp norm-bounded perturbation regions, en-
hancing certified robustness against various adversarial attacks and natural corruption.

• To facilitate the transfer of adversarial robustness in DNNs across different tasks, Con-
trastive Adversarial Representation Distillation (CARD) is proposed as a robustness-
preserving transfer learning framework utilizing robustness-aware contrastive views.
It features a distillation strategy based on adaptive dimensional alignment, enabling
knowledge transfer amid changes in data domains and models. Additionally, a con-
trastive transfer learning algorithm leverages adversarial manipulation and natural cor-
ruption views to capture domain-invariant robustness. Experiments demonstrate that
CARD enhances the transferability of adversarial robustness across data domains and
model structures, achieving superior adversarial robustness and regular predictive per-
formance in lightweight target-domain models with limited training data.

In conclusion, this dissertation contributes to improving the adversarial robustness of
DNNs by addressing critical challenges in generalization, certification, and transferability.
The proposed methods not only advance the understanding of adversarial robustness but also
provide practical solutions for deploying secure DNN-based systems in dynamic and high-
stakes environments such as autonomous driving and cybersecurity。

6.2 Future Work

This dissertation emphasizes the development of innovative defense techniques to counter
adversarial attacks within deep neural networks. The rapid advancement of DL and founda-
tion models (FMs) introduces both challenges and opportunities for future research. Below
are several promising directions for further investigation.

Firstly, while robust training based on latentmixup strategies has been effectively demon-
strated using images, there remains substantial potential for extending these applications
to other input domains. Future research could explore more advanced generative models,
such as Variational Autoencoder (VAE), diffusion models, Transformer, and Generative Pre-
trained Transformer (GPT), to study interpolation strategies applicable to diverse data types,
including network traffic, text, and video. For these specific data domains, the focuswill be on
learning latent representations and creating mixed samples that possess realistic characteris-
tics. Applying latent mixup in non-image domains may necessitate the design of customized
methods to capture unique disentangled representations on the data manifold. However, the
potential for enhancing adversarial robustness through mixup training is significant, mainly
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as this defense strategy does not rely on any adversarial knowledge. Optimization of mixup
training methods across various domains is expected to lead to more DL models with im-
proved adversarial robustness and generalization capabilities.

Secondly, as FMs increasingly integrate into various applications, ensuring their ad-
versarial robustness against adversarial attacks is of paramount importance. Future work
could focus on extending robustness certification methods to larger vision-text FMs, which
present unique challenges due to their multimodal nature. Current certification techniques of-
ten struggle to assess robustness across multiple data modalities jointly. Developing a novel
framework to evaluate the adversarial robustness of these models against adversarial attacks
will be crucial, particularly by considering the interactions between visual and textual inputs.
This endeavor will involve integrating advanced certification strategies that account for the
heterogeneous nature of text data and the homogeneous nature of image data, ensuring that
robustness guarantees are comprehensive and contextually relevant. Furthermore, explor-
ing methods that leverage shared representations between modalities could enable a unified
approach to certification, enhancing the overall adversarial robustness of vision-text FMs.

Finally, exploring techniques for transferring adversarial robustness from FMs to down-
stream models is promising. Achieving adversarial robustness often requires large-scale
training data and significant computational resources. Complex and resource-intensive FMs,
like the Contrastive Language–Image Pretraining (CLIP)model andGPT-4, can provide valu-
able representation learning capabilities for relatively lightweight downstreammodels. How-
ever, matching category spaces and accommodating diverse input data modalities will pose
challenges in this transfer process. Developing effective strategies for such situations can
encourage efficient exploitation of the robustness advantages gained from large FMs in prac-
tical applications where computational efficiency is critical. Research in this area will help
advance the deployment of secure DLmodels across various industries, ensuring they remain
efficient and robust against adversarial attacks.
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